

Towards Developing Effective Fact Extractors

Greg Chase, Jyotsna Das and Scott Davis

Command and Control Division
Defence Science and Technology Organisation

DSTO-TR-1729

ABSTRACT

DSTO has a program of research into automated text processing. Part of this research has led
to the development of a prototype information extraction system known as the DSTO Fact
Extractor System. This system can be used to extract interesting information from free text
documents. Part of applying the DSTO technology involves a skilled user developing a set of
one or more fact extractors that control the behaviour of the information extraction engine.
These fact extractors are developed with the aid of an integrated development environment
known as the Fact Extractor Workbench. This report uses a range of examples to discuss the
issues that must be considered when developing fact extractors.

RELEASE LIMITATION

Approved for public release

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

© Commonwealth of Australia 2005
AR-TR-1729
June 2005

APPROVED FOR PUBLIC RELEASE

Towards Developing Effective Fact Extractors

Executive Summary

The Australian Defence Intelligence Community (ADIC) has access to large volumes of
unstructured text that require processing. The quantity of text far exceeds their capa-
city to process this information in a timely manner. DSTO has responded with a
program of research into automated text processing. Part of this research has led to the
development of a prototype information extraction system known as the DSTO Fact
Extractor System.

A key feature of the DSTO Fact Extractor System is the ability to tailor its use for a
particular information extraction need. An interactive development environment
known as the DSTO Fact Extractor Workbench has been produced to assist the
mechanics of this task but it remains somewhat of an art to create specific fact
extractors.

The goal of this paper is to provide some guidance on the task of developing fact
extractors that are optimised for their intended purpose. The paper introduces some
commonly used fact extractor design patterns or techniques that are applicable to
many information extraction tasks. The paper then shows how these design patterns
may be used on real information extraction tasks by recommending a development
process and working through a number of realistic case studies. The paper also
discusses evaluation and the tradeoffs that may be required between precision and
accuracy. The work reported in this paper was carried out under the task INT 02/290.

Authors

Greg Chase
Command and Control Division

Greg Chase graduated with honours from Flinders University in
1977. He joined the Electronic Warfare Division of the then
Defence Research Centre Salisbury in 1978. He participated in the
development of electronic battlefield simulations and had the
technical lead in the development of an electronic warfare
command and control system. He joined the Information
Technology Division in 1989 where he has been involved in work
on Hypermedia systems, Management of Geographic Information
and more recently Information Extraction. Greg was the national
leader for Australia's participation in Coalition-CINC21
(Commander IN Chief in the 21st century).

____________________ __

Jyotsna Das
Command and Control Division

Jyotsna works in the Intelligence Analysis Group. She joined the
Information Technology Division of DSTO in 1989 where she has
been involved in a number of projects in areas including
hypermedia systems and geospatial information management.
More recently her work has focused on content extraction and text
mining.

____________________ __

Scott Davis
Command and Control Division

Scott Davis graduated with honours from the University of
Adelaide in 1989. He joined the then Information Technology
Division of DSTO in 1990. He has been involved in a number of
projects in areas such as Management and Discovery of Geospatial
Information, Hypermedia, and Information Extraction. Scott was
involved in the Geospatial Data aspects of Coalition CINC-21.

____________________ __

Contents

1. INTRODUCTION ... 1

2. TYPES OF INFORMATION EXTRACTION ... 2
2.1 Named Entity... 2
2.2 Co-reference ... 2
2.3 Concepts ... 3

3. APPLICATION OF FACT EXTRACTORS AND ACCURACY
CONSIDERATIONS .. 3
3.1 Accuracy and Information Extraction ... 4
3.2 Assisted Reading .. 4
3.3 Advanced Information Retrieval ... 5
3.4 User Assisted Database Population .. 5
3.5 Automatic Database Population .. 6
3.6 High Volume Data Feeds .. 6

4. FACT EXTRACTOR CONCEPTS .. 7
4.1 Facts ... 7
4.2 Fact Extractors .. 7

4.2.1 Fact Attributes.. 7
4.2.2 Fact Extractor Rules... 8

4.3 Categories of Fact Extractors ... 8
4.4 The Fact Extractor Processing Model .. 9

4.4.1 Finding the Sentences ... 9
4.4.2 Reformatting Text.. 9
4.4.3 Processing a Sentence ... 10
4.4.4 The Fact Cache ... 11

5. FACT EXTRACTOR DESIGN PATTERNS ... 11
5.1 A Simple List with Just a Few Items ... 11
5.2 A Simple List with Result Substitution ... 12
5.3 A List with Many Items ... 12
5.4 A Simple Pattern ... 13
5.5 Multiple Create Rules .. 13
5.6 Complex Actions... 14
5.7 Implied Information .. 15
5.8 External Action Functions ... 15
5.9 Extra Constraints ... 16
5.10 Subdividing Complex Tasks .. 17
5.11 Linking Back to Previous References of a Fact (Co-reference) 18
5.12 Expand Rules ... 19
5.13 Reducing the Range of a Match ... 20
5.14 Execution Speed Considerations ... 21

6. OVERVIEW OF THE FACT EXTRACTOR DEVELOPMENT PROCESS 22
6.1 Identify the Information Need... 23
6.2 Collect a Corpus of Representative Source Documents 24
6.3 Examine the Corpus ... 24
6.4 Generalise Your Observations ... 24

6.5 Consider the Design... 25
6.6 Develop... 26
6.7 Test... 26
6.8 Deploy... 27
6.9 Collaborative Development.. 27

7. EXAMPLES OF DEVELOPING FACT EXTRACTORS ... 27
7.1 Extraction of Tightly Structured Objects ... 27

7.1.1 Internet Protocol (IP) Address... 28
7.1.2 Email Address.. 29
7.1.3 URL.. 30
7.1.4 Phone Numbers ... 31

7.2 Dates and Times.. 34
7.2.1 Dates.. 34
7.2.2 Times ... 37

7.3 Names of People ... 38
7.3.1 Names from a List of Known Names ... 38
7.3.2 Unbounded Names ... 39

7.4 Placenames ... 41
7.5 Relationships ... 43

7.5.1 Person Names and Aliases... 43
7.5.2 Relationships.. 46

8. EVALUATION... 47
8.1 During Development ... 47
8.2 Ongoing Evaluation During Use ... 47

9. SUMMARY .. 47

10. FURTHER CONSIDERATIONS .. 49

REFERENCES .. 49

APPENDIX A THE REGULAR EXPRESSION BASED PATTERN LANGUAGE. 51
A.1. Simple Character Patterns .. 51
A.2. Specifying Groups ... 51
A.3. Repetitive Patterns ... 51
A.4. Alternation... 52
A.5. Extracting Data.. 53
A.6. Embedding Another Fact Extractor In A Pattern...................... 53

APPENDIX B THE ACTION LANGUAGE... 54

 DSTO-TR-1729

1

1. Introduction
The Australian Defence Intelligence Community (ADIC) has access to large volumes of
unstructured text that require processing. The quantity of text far exceeds their capa-
city to process this information in a timely manner. DSTO has responded with a
program of research [1] into automated text processing. Part of this research has led to
the development of a prototype information extraction system known as the DSTO
Fact Extractor System.

Information extraction is the process of using computers to recover information from
texts in a variety of formats - such as ASCII files, emails, web pages - and convert it
into a more usable form. Unlike information retrieval, which is concerned with finding
whole documents to present to a user, information extraction deals with information at
a much finer grain. The extracted information can either be presented directly to a
human or can be passed on to a downstream process for consolidation and further
processing.

The DSTO Fact Extractor System is a text-processing framework that uses software
agents to skim the text and extract structured information or “facts”. In this context
facts are interesting pieces of information like dates, locations, people, relationships
and events. Although the system may be deployed against semi-structured text, and
text embedded in other data streams, its focus is on processing human readable text in
the form of short documents, such as news stories.

The system can be applied to an information extraction need as a stand-alone
application1 or embedded into a larger system through its published Application
Programming Interface (API). Either approach can be automated or used interactively.
In its interactive mode it provides a useful mechanism for perusal of documents by dis-
playing the document with pertinent facts highlighted thus quickly drawing a user’s
attention to relevant areas. The system could also be deployed to automatically collect
information in a format suitable for further analysis; for example, by application of
data mining tools, or as an input to an indications and warnings system.

A key feature of the DSTO Fact Extractor System is the ability to tailor its use for a
particular information extraction need. An interactive development environment
known as the DSTO Fact Extractor Workbench [1],[3] has been produced to assist the
mechanics of this task but it remains somewhat of an art to craft specific fact extractors.
The goal of this paper is to provide some guidance on this task.

This paper will introduce a range of information extraction tasks and discuss how the
intended use of the information might affect the design process. The paper will then
define a range of concepts central to the fact extractor system and introduce some basic
fact extractor building blocks, and common techniques that often get used when
building real fact extractors. The core of the paper proposes a fact extractors design and
development process and then works through a number of case studies. The paper
concludes with a discussion on evaluation and future considerations.

1 The principal user application is known as FormFiller[6]

DSTO-TR-1729

2

2. Types of Information Extraction

Information extraction is a very broad field with examples as simple as finding
geographic place names through to building up a picture of a terrorist organisation. It
may deal with extracting information from just one document or attempt to exploit a
large document collection. The DSTO system is aimed at extracting information from
individual documents2. Other tools3 may be used to fuse information from across a
collection of documents. The DSTO system can be used against relatively simple “who,
what, when or where” type information extraction requirements, commonly referred to
as named entity extraction. The system can be also used to recover pronoun and other
co-reference information in the text and to extract more complex concepts such as the
relationships between named entities.

2.1 Named Entity

The simplest type of information extraction is to look for names of objects in the text.
These might be the names of people, places, and organisations but also includes more
abstract names such as currency amounts, dates and times. This type of information
extraction is commonly referred to as Named Entity extraction and is of particular
interest to Defence as it encompasses discovery of who, what, when, where
information.

A variety of techniques can be used to discover named entities. Finding names of
people or places can be achieved by matching against a list of desired names. Of course
this technique will only work if you know beforehand the names that you are looking
for. To find arbitrary names in a text can involve part-of-speech analysis or the use of
other clues such as titles and capitalisation.

Objects like dates and currency amounts are not amenable to the list approach; these
kinds of requirements are best addressed with a rule-based approach. For example a
rule might say, “look for a currency symbol followed by a sequence of digits”.

Named entity extraction generally only has to consider the text on a sentence-by-
sentence basis as the named entity is nearly always represented inside a single
sentence.

2.2 Co-reference

Information extraction also needs to concern itself with understanding co-references,
for example pronouns like “he” / “she” and name abbreviations. Ideally the extraction
process would link these co-references back to the original object; for example, it would

2 Strictly the system can also access meta-data about the document, this could be used to combine
information across documents but this is not the intent of the meta-data support.
3 For example the Data Mining & Visualisation Toolkit, formerly known as the Normalcy Analysis
Toolkit [13].

 DSTO-TR-1729

3

discover that “Tom” is a co-reference to the previously introduced person “Mr. Tom
Smith”.

Co-references may appear within a sentence or occur over a group of sentences. The
DSTO system can deal with both cases.

2.3 Concepts

Information extraction doesn’t stop at finding the named entities. Often of greater
interest are relationships between the entities, which we refer to as "concept
extraction". Concept extraction is concerned with discovery of events or relationships
of interest. Examples include the location, date and type of events recorded;
individuals involved in the events; and relationships between individuals.

Concept extraction is considerably less precise and more challenging than named
entity extraction. As it normally relies on using information discovered by a named
entity extraction, its effectiveness will be highly dependent on the effectiveness of the
underlying named entity extraction. Unlike named entities that tend to exist in a single
sentence, concepts are frequently embodied in a number of sentences. This makes
defining the concept extraction process inherently more difficult and highly dependent
on good co-reference resolution.

The DSTO system includes specific support for constructing an information system
that can extract concepts between previously discovered named entities. Subordinate
fact extractors that can discover desired named entities are often used to assist a
composite fact extractor to discover an interesting concept. Particular types of rules are
used to recover concepts. Subordinate and composite fact extractors are described in
section 4.3 and fact extractor rules are described in sections 4.2.2 and 4.4.3.

3. Application of Fact Extractors and Accuracy
Considerations

Fact Extractors can play many roles in assisting users to meet their information needs.
These range from relatively lightweight tasks, such as highlighting an interesting fact
to the reader, through to sophisticated automatic population of a structured database.

The cost of developing a particular fact extractor needs to be balanced against the value
achieved by meeting the information need of the users. Experience has shown that
striving for high accuracy entails a high cost in developer effort. Section 3.1 defines
accuracy and Sections 3.2 to 3.6 describe some information extraction tasks and their
accuracy needs.

DSTO-TR-1729

4

3.1 Accuracy and Information Extraction

It is difficult, if not impossible, to construct Fact Extractors that discover all facts
accurately. Accuracy considerations fall into several categories:

• Under generation (false negative): Did the fact get missed altogether?

• Over generation (false positive): Was a “non-fact” erroneously discovered?
Did something get selected which should not have contributed to a fact?

• Internal accuracy (precision) of the fact: Facts are composed of a number of
attributes, for example hours, minutes and seconds for a “time” fact. It is
possible to only discover some of them correctly. These can be examples of false
negative and false positive errors, but for a part of a fact rather than the whole
fact.

• Co-references4: Were co-references to the fact under or over generated?

• Implied information5: Was implied information correctly found?

Over or under generation of facts is frequently a trade-off; often the Fact Extractor
developer will need to make a conscious choice between the two cases, as the goal of
never incurring a false positive or a false negative may be impossible over a wide range
of source documents unless the fact extractor developer can examine every document
in the corpus. Internal accuracy of a fact is more often related to the amount of effort
the developer is prepared to expend on the development process. It must be kept in
mind that achieving a very high accuracy with any information extraction tool may be
a very time consuming task. The developer needs to know when to stop and accept the
outcome, particularly as many tasks are tolerant of certain types of errors. For example
attempting to capture misspellings to avoid false negatives in real documents may
result in a higher false positive rate by matching other words.

3.2 Assisted Reading

Frequently there is a requirement for users to peruse large volumes of documents
seeking out pertinent facts. Fact Extractors can assist by highlighting these facts as the
documents are presented one at a time to the user, quickly drawing the user’s attention
to salient portions of each document. In this scenario a user is unlikely to be offended
by a moderate degree of over generation provided that there is little under generation.
The internal accuracy of the attributes of the fact is irrelevant, as users will not actually
look at the fact, rather they will read the sentence/paragraph that contains the fact.
Pronoun discovery (an example of co-reference) is likely to be important, but again a
degree of over generation will be tolerated.

4 A Co-reference is a reference to a previous concept. For example the pronoun he would normally refer
to a previously introduced male.
5 Often information is implied rather than explicitly stated. For example the year part of a date is often left
out when it is obvious.

 DSTO-TR-1729

5

The FormFiller[6] application distributed with the Fact Extractor System can be used in
an assisted reading mode. A novel feature of the FormFiller application is the ability to
apply several fact extractors to the document at the same time. This saves the fact
extractor developer from needing to develop an elaborate all encompassing fact
extractor leaving it to the reader to turn on an appropriate collection of simpler fact
extractors. In this way the often-complex task of determining the relationships between
facts is left for the reader to do as they read the highlighted sentences rather than
requiring this issue to be solved by the fact extractor developer.

3.3 Advanced Information Retrieval

Full text retrieval tools such as the popular Internet search tool Google™[7] often
return many thousands of documents against a typical search. The Fact Extractor
technology could be used to reorder6 the result set in an effort to increase the
probability that more important documents are closer to the top. A user might perform
a Google™ search with a number of keywords. A fact extractor could then be used to
look for a particular relationship between the keywords and thus reorder the result set
based on the facts found. In this example fact extractors are being applied to an already
imperfect information source (the result of a search) and as the fact extractor is not
discarding information it is likely that the user will be very tolerant of fact extractor
errors. The internal accuracy of the fact is largely irrelevant and it is unlikely that co-
reference discovery will be required. Even quite severe over-generation will not be a
problem; as long as the important documents are raised in priority, the reordered
result set will be better than the original result set. Often a moderate degree of under
generation will also be acceptable as long as an example of the fact is found; there is no
need to find all examples in the same text. Frequently the user only wants to find a
reference to a subject, rather than all references. In this case the fact extractor can
significantly under-generate results but provided a fact somewhere from the document
collection is found it will still be of assistance to the user.

3.4 User Assisted Database Population

The business processes of an organisation might require users to populate a database
with facts from a collection of documents. The FormFiller[6] application can perform
user-supervised population of a database with facts from a target document set. Each
document in the set is presented to the user with all discovered facts highlighted.
Attribute values are computed on-the-fly as the user clicks on particular highlighted
facts. The application supports the user manually modifying the attribute values
computed by the fact extractor. When the user is satisfied with the extracted
information they may choose to send the results to the database.

The accuracy requirements for user assisted database population are similar to the
assisted reading task described in section 3.2. In particular the correct discovery of co-

6 At this point in time the fact extractor team has not produced an example application for this task.

DSTO-TR-1729

6

reference and implied information is unlikely to be important, as the user would
generally add this information. The principal difference is that the user will now pay
attention to the fact attributes, and will therefore expect greater internal accuracy.
While some correction might be acceptable, the user will not want to have to correct
every attribute of every fact.

As for assisted reading, the FormFiller application is able to apply several fact
extractors to the document at the same time. Again this saves the fact extractor
developer from needing to develop an elaborate all-encompassing fact extractor
leaving the reader to pick out the appropriate collection of related simple facts. The
FormFiller application allows facts from several different fact extractors to be
combined into one database record.

3.5 Automatic Database Population

If the Fact Extractor is robust and sufficiently accurate a user may choose to
automatically populate a database with all discovered facts from the target document
set. The FormFiller[6] application can be used for this task. Alternatively the Fact
Extractor core library[8] may be used to create a custom application.

In this example fact extractors are used in an unsupervised manner so the accuracy
constraints become tighter. The likely outcome is that only relatively simple fact
extractors with modest information extraction expectations would achieve the required
accuracy. While it is possible to use the FormFiller application in an automatic mode
with more than one fact extractor selected, more satisfactory results will be achieved
with a single, purpose-designed fact extractor.

3.6 High Volume Data Feeds

Defence agencies often have access to many dynamic information feeds. They range
from the largely uncontrolled Internet news groups through to paid news subscription
services. Many of these information feeds do not provide adequate (if any) metadata
for each information item or article. The challenge is the volume, much of the material
is not of immediate interest and it is not practical to have analysts routinely monitor
many of these sources.

Sometimes there will be articles which mention people, places, or events of potential
interest. An application could be developed that uses Fact Extractors to find potentially
interesting facts. These facts can be considered to be metadata about the article. This
metadata could be used to populate a database, including references back to the news
articles from which they are derived. Once the data is in a structured form, further
analysis, such as data mining, can be used to discover information which may not have
been available from reading the individual sources. The application could also
generate alerts if it finds facts about particular interesting concepts.

 DSTO-TR-1729

7

Given the volume of information, fact extractors developed for this task will need to
trade off accuracy for performance. Over generation (creation of non-facts) should be
avoided as is likely to mislead subsequent data mining applications.

4. Fact Extractor Concepts

Before we can explore the process of building fact extractors we need to define some
concepts which are core to the fact extractor system. In this section we will introduce
facts, fact extractors and the components of a fact extractor: the rules, guards, patterns and
actions. We will also provide an overview of the fact extractor processing model.

4.1 Facts

In the context of the DSTO Fact Extractor System a fact is information about a
particular entity, relationship or event of interest. A fact is represented by:

• The name of the type of fact.

• A list of attributes that define the fact and their corresponding values (if
discovered).

• The text location that contain the evidence that created the Fact.

• Sequences of other text locations, which refer to or extend the evidence about
the fact.

4.2 Fact Extractors

Fact extractors are used to discover facts. A Fact Extractor is implemented through a
generic processing engine and a specification that defines how it skims text, produces
facts and assigns values to attributes.

A Fact Extractor includes:

• A list of field names representing the attributes of the fact.

• A list of rules that describe how a fact is found and the attributes calculated.

To simplify the construction of complex information extraction systems the DSTO
system supports building Fact Extractors in a hierarchical manner allowing higher-
level Fact Extractors to invoke subordinate ones.

4.2.1 Fact Attributes

A Fact Extractor Specification includes a list of field names that represent the attributes
that the system will attempt to populate from the text. For example a date fact would
typically have day, month and year fields.

DSTO-TR-1729

8

4.2.2 Fact Extractor Rules

The Fact Extractor specification includes a set of pattern and action rules. The patterns,
expressed in a modified Regular Expression Language[4],[8] are used to detect the
existence of a fact. The actions calculate values for attributes of the identified fact.

Each rule has:

• A type – create, co-reference or expand – described below.

• A pattern represented by a modified regular expression.

• A guard expression. A guard expression may provide extra constraints to the
pattern such as range-checking a number. It can also reference previously
found facts. The supported functions are described in Appendix B.

• A list of actions. An action is represented by a function which computes a
value. One action is specified for every field for which a value is to be
determined by that rule. The supported functions are described in Appendix B.

The rules are grouped into three types:

Create Rules: Describe the patterns that identify the fact in the text. Each create
rule includes a specification of the action to be undertaken if the
pattern matches. A new fact is identified every time a create rule
matches the text.

Co-reference Rules: Specify connections back to the most recently discovered fact of
this type that satisfies the guard expression. For example
pronouns like “she” and “he”, people later referred to only by
their first name, or role-based references such as "the president".

Expand Rules: Update or add to the attributes of an existing fact. For example a
section of text like “…has blue eyes...” would not be matched by
a person create rule as this is insufficient evidence for a person,
but this text adds information about eye colour. Expand rule
patterns must contain the special pattern <self> which
identifies where a suitable create or co-reference rule has
matched in the text.

Each rule type is subject to a particular processing model described in Section 4.4.3

4.3 Categories of Fact Extractors

As described earlier a key feature of Fact Extractors is that they may use other Fact
Extractors. There is some design and testing differences between fact extractors that are
intended to be used by other fact extractors and those that are not. This section
introduces some categories of fact extractors; these terms will be used later in the
document.

 DSTO-TR-1729

9

Primary A Fact Extractor that is not intended to be invoked by any other Fact
Extractor is known as primary. Its field names will be aligned with the
information need of the task.

Composite A fact extractor that uses another fact extractor is known as a composite
Fact Extractor.

Subordinate A fact extractor that is invoked by another fact extractor is known as a
subordinate fact extractor. Fact extractors may be invoked by more7 than
one composite. Subordinate fact extractors will need a broader testing
regime.

Simple A fact extractor that does not invoke any other fact extractors is known
as a simple fact extractor.

A fact extractor can exist in more than one category. A single fact extractor that
independently satisfies a particular information need is both primary and simple.
Many simple fact extractors would be routinely used as subordinates.

4.4 The Fact Extractor Processing Model

Some knowledge of how Fact Extractors work [8] is required to be able to develop
effective fact extractors. Fact extractors are applied to a document a sentence at a time.
If a particular fact extractor invokes other (subordinate) fact extractors then these
subordinates are processed first. Any subordinate facts found are retained in the fact
cache to be described in section 4.4.4.

4.4.1 Finding the Sentences

Fact Extractors process one sentence at a time. The input document is broken up into
sentences by a piece of software known as the sentence-manager. The sentence-
manager uses clues such as capital letters and full stops to determine the sentence
boundaries. It also uses the block structure of documents (such as paragraph elements
in HTML) as indications of sentences. At times the behaviour of the sentence-manager
will not conform to the user’s expectations; it is proposed that a future version of the
fact extractor system will allow the fact extractor developer to fine-tune the sentence-
manager’s behaviour.

4.4.2 Reformatting Text

The Fact Extractor system reformats plain text to make it easier to write patterns
against the intent of the sentence, without needing to consider that the layout
happened to insert a line break in the flow of text. It also removes any extraneous white
space for the same reason. It attempts to intuit paragraph breaks from the layout, and

7 The Fact Extractor Workbench[12] includes a tool that lists all of the composite fact extractors that use a
particular subordinate fact extractor (it’s subordinates are also listed).

DSTO-TR-1729

10

leave them intact. This is usually correct, but may not be right for some partially-
formatted inputs.

4.4.3 Processing a Sentence

For each sentence, the processing engine performs the following steps in order.

Subordinate
Fact Extractors

If any of the primary fact extractor’s rules refer to subordinate fact
extractor(s), then all the subordinate fact extractors are run
completely (according to the process in this section) before the
primary fact extractor. This places their results in the fact cache so
they are available for the primary fact extractor.

Create Rules Create rules create a new fact. All of the create rules are evaluated in
order. To evaluate a rule, its pattern is used to find any matches on
the text in the sentence. For each match, the guard expression is
evaluated, and if it is TRUE (or there is no guard expression), the
rule’s actions are performed to assign values to the fields in a newly
created fact. If more than one create rule for a fact extractor matches
the same part of the text, only one fact is created. If the matched
range of one completely contains the range of the other, then the
rule with the longest match is the one that creates the fact. If the
ranges are exactly equal or overlap, then the last create rule is the
one used, on the assumption that the rules are listed from the
simplest to the most complex. In practice, it is very rare to have
different ways of finding the same fact that rely on overlapping
parts of the text.

Co-reference
Rules

Co-reference rules identify another reference to an already-
discovered fact. Co-reference rules are evaluated after create rules,
updating an existing fact, rather than creating a new one. Co-
reference rules usually have a guard expression to restrict which
fact might be referred to, but often have no direct actions (they
automatically update the ranges of text referred to). They search
back through the fact cache to find the most recent fact of the right
type that allows the guard expression to evaluate to TRUE. All co-
reference rules are evaluated in order.

Expand Rules Expand rules add information to a previously-found fact. They are
evaluated after co-reference rules so that they can add attributes to a
fact regardless of whether it is an original create rule match or a
later co-reference that is being used to anchor the rule in the text.
Expand rules usually have actions to update one or more fields of
the fact with additional information. Guard expressions may be
used in expand rules in the same way as in create rules.

 DSTO-TR-1729

11

4.4.4 The Fact Cache

For simple named entity extraction, such as a place name, it may only be necessary to
examine the sentence under consideration. However for more complex information
extraction tasks the concepts introduced in previous sentences have a bearing on the
information in the sentence under consideration. One example is the use of a pronoun
such as he, which in a well-constructed text would refer to a previously introduced
male. Another example is a partial date like 27th of February. In this case the year is
missing, but this should be evident from the year of a previous date reference or from
document metadata such as publication date. In order to support the development of
fact extractors that cope with such examples all of the facts discovered so far are kept in
a fact cache. Facts in the fact cache can be accessed8 during the evaluation of a guard
expression or during the processing of the action part of a rule.

All of the facts discovered are retained in the cache, including those discovered by
subordinate fact extractors. When a document has been processed only the top-level
facts are reported and then the cache is cleared. At any point in time therefore the
cache only holds facts and subordinate facts pertinent to the document currently being
processed.

5. Fact Extractor Design Patterns

The process of constructing useful fact extractors may appear quite complex but
usually involves combining some fairly basic concepts. Examples of these concepts are
finding a word from among a list of words, or looking for a pattern that represents a
date or currency amount. This section introduces those basic concepts or building
blocks (known as design patterns in the software industry); the next section shows how
they are applied to a range of real information extraction problems.

An overview of the pattern language is provided in Appendix A and a summary of the
action language is provided in Appendix B

5.1 A Simple List with Just a Few Items

A fairly common information need is to find instances of certain words in a document
and return the word as a fact. For example we may need to find occurrences of
January, February, … and record them as a month. A fact extractor could be
constructed with a single field Month, and the following create rules:
Pattern: January Action: Month = "January"
Pattern: February Action: Month = "February"
Pattern: March Action: Month = "March"
…

8 The action language function CACHE provides this support, and the FXBench debugging environment
allows a developer to view all of the cache contents during development.

DSTO-TR-1729

12

An alternative to this approach is to combine the 12 rules into one and use the actual
text matched as the result.

Pattern: January|February|…|November|December
Action: Month = MATCH("0")

Concepts introduced:

Plain text as the pattern and text strings in the action.
“|” as the regular expression “or” function.
MATCH("0")9 returns the text matched by the rule.

5.2 A Simple List with Result Substitution

At times you may need to match items in a list but return something different from
what was matched. For example you may wish to find Jan or January and return “1”.
This can be achieved with create rules like:

Pattern: Jan|January Action: MonthNum = "1"
Pattern: Feb|February Action: MonthNum = "2"
…

The above patterns could be rewritten in a more condensed form:
Pattern: Jan(uary)? Action: MonthNum = "1"
Pattern: Feb(ruary)? Action: MonthNum = "2"
…

Concepts introduced:

Assignments in action sections can be different to the text matched.
Parentheses for grouping.
“?” for matching 0 or 1 occurrences of the previous group or character.

5.3 A List with Many Items

If the concept is extremely simple, and all that is required is to find matches for a list of
words or phrases, there is a special type of fact extractor called a list fact extractor. These
have a much simpler file format (simply a list of phrases in a text file, one on each line).
This file must be named to end with “.fx” and may be created with any text editor. If
the phrases are all lower case, they will match any case in the text; if there are upper
case letters in the list, then matching is case-sensitive. The Fact Extractor Workbench
provides a simple editor for these lists. They may be processed using different internal
algorithms, which are intended to be optimised for these lists. When list fact extractors
are used, they extract facts with a single field containing the phrase that matched.

9 In general MATCH("n") returns the nth parenthesised group in the rule, MATCH("0") is a special case
that returns the whole text matched by the pattern.

 DSTO-TR-1729

13

Concepts Introduced:

List fact extractors.

5.4 A Simple Pattern

The list examples above introduced two of the operators that can be used in a pattern:
“|” for alternation and “?” for zero or one occurrence of the previous group. This
section introduces the power of relatively simple patterns. Suppose that we desire to
locate formal references to people in a document. We might do this based on looking
for a title (Dr. Mr. Mrs. Miss. Ms.) followed by a word starting with a capital letter. If
we had two fields called Title and Surname we could use the following rule:
Pattern: (Dr|Mr|Miss|Ms|Mrs)\.? ([A-Z][a-z]+)
Action: Title = MATCH("1")
Action: Surname = MATCH("2")

Fact Extractor regular expressions can be more complex. The reader is referred to the
online help provided in the Fact Extractor Workbench for a discussion on Regular
Expressions, and to [4],[5] for a detailed coverage of Regular Expressions.

Concepts introduced:

+ for matching one or more times.
- for a character range.
[] for a disjunction (exactly one of the characters to match).
Using MATCH("n") to extract the text that matched the nth parenthesised expression.
\ to quote a special character such as “.”, “[“, “(“, “?”.

5.5 Multiple Create Rules

The above examples will find Mr. Smith but will not find names like Mr. Bill Smith or
Ms Mary O’Shea. To also find these names, we could change the fields used to Title,
Firstname and Surname, and use the following two rules:

Rule 1: (Finds a name with a title and surname.)

Pattern: (Dr|Mr|Miss|Ms|Mrs)\.? ((Mac|Mc|O’)?[A-Z][a-z]*)
Action: Title = MATCH("1")
Action: Surname = MATCH("2")

Rule 2: (Finds a name with a title, first name and surname.)

Pattern:
(Dr|Mr|Miss|Ms|Mrs)\.? ([A-Z][a-z]*) ((Mac|Mc|O')?[A-Z][a-z]*)

Action: Title = MATCH("1")
Action Firstname = MATCH("2")
Action: Surname = MATCH("3")

DSTO-TR-1729

14

When more than one create rule is defined for a fact extractor, the rules are processed
in order (see Section 4.4.2). If the text matched by different rules overlaps only one fact
will be created as follows:

• When the text matched by a rule completely contains that matched by any other
rule(s), the rule with the longest match is the only one that will create a fact. For
example consider the text string “Jack and Jill went up the hill”. Consider the
case where there are three rules – rule 1 matches “Jack and Jill”; rule 2 matches
“Jack”; and rule 3 matches “Jill”. Note that the text matched by rule 1
completely contains that matched by rules 2 and 3. Therefore the fact created
by rule 1 (“Jack and Jill”) will be discovered.

• When the text matched by a rule overlaps (or exactly matches) text matched by
any other rule(s) then the last matched rule is the only one that creates a fact.
For example, with the string given above, consider two rules – rule 1 matches
“Jack and”; and rule 2 matches “and Jill”. Note that in this example the text
matched by the two rules overlap. Therefore, as rule 2 came after rule 1 the fact
created by rule 2 (“and Jill”) will be discovered.

Concepts introduced:

Fact Extractors can have more than one create rule.

5.6 Complex Actions

In the examples introduced so far the action part of the rule has simply set a field to a
fixed value or used the actual matched text as the value. Sometimes you may want to
put together information to derive the complete value of a fact. For example, to extract
the full name of a person you could put together their title, first name and surname
using the CONCAT action function. Using the example discussed in the previous section
for finding person names, an additional action is used to compute a value for the
Fullname field:

Rule 2:

Pattern:
(Dr|Mr|Miss|Ms|Mrs)\.? ([A-Z][a-z]*) ((Mac|Mc|O')?[A-Z][a-z]*)

Action: Title = MATCH("1")
Action: Firstname = MATCH("2")
Action: Surname = MATCH("3")
Action: Fullname = CONCAT(MATCH("1")," ",MATCH("2")," ",MATCH("3"))

A variety of other functions are listed in Appendix B, they may be combined together.

Concepts introduced:

The expressive power of the action language.
CONCAT(Argument1, Argument2, …) which returns the concatenation of its

arguments.

 DSTO-TR-1729

15

5.7 Implied Information

Frequently in text some information is left out but is implied from surrounding text. A
complete date10 is generally expressed in terms of a day, month and year. Sometimes
dates are only partially stated in the text, for example “4 Feb”. When this occurs a
reader would typically reference the previous more fully specified date to resolve the
year for “4 Feb”. The action function CACHE looks in the fact cache (refer to Section
4.4.4). It can be used to complete implied information such as the year in a date, if a
complete date has been specified in a previous sentence of the current document. A
Date fact extractor that extracts dates of the format “12 Feb 02” could have the
following pattern and action rules:

Rule 1:

Pattern: ([1-3]?[0-9]) (Jan|Feb|…|Dec) ([0-9]{2})
Action: day = MATCH("1")
Action: mon = MATCH("2")
Action: year = MATCH("3")

We can extend this fact extractor to extract partially stated dates of the format “3 Feb”
and compute the year based on the most recent previously found Date fact in the
document. To do this we can add another rule11 to the fact extractor that uses the
CACHE function as follows:

Rule 2:

Pattern: ([1-3]?[0-9]) (Jan|Feb|…|Dec)
Action: day = MATCH("1")
Action: mon = MATCH("2")
Action: year = CACHE("Date","year")

Concepts introduced:

{n} to match exactly n occurrences
CACHE(<fact extractor name>, <fieldname> [, < default value>]) which searches the

cache of recent facts for the specified fact extractor name and returns the value
of fieldname (or an optionally specified default value if not found).

5.8 External Action Functions

From time to time there may be a requirement in the action part of a rule that cannot be
met by the supplied action functions. A Java programmer can add new actions12 to the

10 Dates are a difficult concept and are discussed in more detail in Section 7.2
11 Rule 2 will only create a fact if Rule 1 has not as it matches a shorter text. See Sections 4.4.2 and 5.5
for more details.
12 The Online help on FX Expression Language in the Fact Extractor Workbench [12] provides
information on how external functions can be invoked as Action functions. Reference [8] also discusses
External Action functions.

DSTO-TR-1729

16

collection of allowable actions. These user-defined extensions can then be used as a
part of the action language to compute field values.

Date references that require calculations, such as “yesterday”, are an example of an
extraction problem that may need an external action function.

Consider the following excerpt from a news story taken from [9]:

GUATEMALA CITY, 4 FEB 90 (ACAN-EFE) -- [TEXT] THE GUATEMALA ARMY
…ATTACKED THE FARM 2 DAYS AGO.
…
Notice that there is a date present in the first sentence of the news story. Our
information extraction task may require us to capture the date of any attacks. The text
“2 DAYS AGO” is clearly a reference to a date, but resolution and calculation13 is
required to discover the actual date. An external Java function, for example
AddDaysToISODate(), could be developed that would allow arithmetic on dates.

If we had a basic ISODate14 fact extractor with a single field date then the addition of
the following rule would support matching text like “2 DAYS AGO”.

Rule:…

Pattern: ([1-9][0-9]?) DAYS AGO
Action: date = AddDaysToISODate (CACHE("ISODate","date"),

MULTIPLY("-1",MATCH("1")))

When invoking the AddDaysToISODate() function, we have used the CACHE Action
function to obtain the most recent previously discovered date. Since we are trying to
subtract a given number of days from a known date, we use the MULTIPLY Action
function to convert the integer parameter to a negative number.

Concepts introduced:

The ability to extend the action language with external user functions.
MULTIPLY(argument1,argument2,..) which returns the product of its arguments.

5.9 Extra Constraints

At times the pattern language used for the rules may not be expressive enough to
accurately constrain the facts produced. For example we may wish to find Internet
Protocol (IP) numbers. IP numbers are four numbers each in the range 0-255 with a dot
between each number. It is easy to write a pattern that finds a number in the range 0-
299; it is rather harder to write one that finds a number in the range 0-25515. The author

13 The calculation is non trivial and involves (at least) consideration of leap years.
14 We have kept this example simple by using ISODate which uses a date representation[10] defined by
the International Standards Organisation. In this example a single field of the form yyyy-mm-dd
represents a date.
15 In section 7 we will discuss the need to examine sample documents before developing a fact extractor.
If we examine a range of sample documents it is likely that we would never see an example of something
that has the same pattern as an IP number but that does have some numbers in the range 256-299. So this
level of guard check is most likely pedantic and unnecessary.

 DSTO-TR-1729

17

of an IP number Fact Extractor may find it easier to look for groups of numbers in the
range 0-299 and then use a guard expression to further constrain the selection to 0-255.
Pattern: ([12]?[0-9]?[0-9])\.([12]?[0-9]?[0-9])\.([12]?[0-9]?[0-

9])\.([12]?[0-9]?[0-9])

Guard: AND (LESSTHAN(MATCH("1"),256),
 LESSTHAN(MATCH("2"),256),
 LESSTHAN(MATCH("3"),256),
 LESSTHAN(MATCH("4"),256))

Action: IP = CONCAT(MATCH("1"),".",MATCH("2"),".",MATCH("3"),
 ".",MATCH ("4"))

Alternatively

Action: IP = MATCH ("0")

A second example is that we may wish to tighten the specification of our date fact
extractor to create facts for text patterns that are valid dates, including correctly
checking the number of days in the month. A guard expression can be used to only
allow the fact to be created if it will be a truly valid date.

Of course to do this properly we should also check for leap years. Leap year rules are
quite complex and beyond the scope of what the fact extractor action language was
designed for. They are however a good candidate for an external action function. If we
had a Java programmer develop a date_valid()16 function we could then write a
fact extractor like:

Pattern:…
Guard: date_valid(MATCH("1"),MATCH("2"),MATCH("3"))17
Action: day = MATCH("1")
Action: month = MATCH("2")
Action: year = MATCH("3")

Concepts introduced:

Guard expressions in create and expand rules.

5.10 Subdividing Complex Tasks

A key design principle of the DSTO Fact Extractor System is to support decomposition
of complex tasks into simpler parts. Composite fact extractors are able to use the results
of other fact extractors. This was described as part of the processing model discussion
in Section 4.4.2.

16 In this example date_valid() expects three strings representing the day, month and year, returning true
or false as appropriate.
17 Note that the values of the fields day, month and year have not been calculated at the time of
performing the guard check so we must use the MATCH function to obtain the parameters to the
date_valid() function.

DSTO-TR-1729

18

Subordinate fact extractors are invoked by including the name enclosed in angle
brackets ("<…>") in the pattern of a rule. Their values may be accessed in actions and
guard expressions using the FIELD(…) function. For example a simple Date18 fact
extractor might rely on a Month fact extractor (such as the one introduced in Section
5.2).

Pattern: ([0-3][0-9]) (<Month>) (([12][0-9])?[0-9][0-9])
Action: day = MATCH(″1″)
Action: month = FIELD(″2″, ″MonthNum″)
Action: year = MATCH(″3″)
Action: DateString = CONCAT(VALUE(″year″), ″-″, VALUE(″month″), ″-

″, VALUE(″day″))
Subgroups in the regular expression pattern are numbered in order from left to right,
counting the opening parenthesis ("("). In this example pattern, the century number
can be accessed as MATCH("4"). If there was no century in the text, the match will be
an empty string.

The current implementation does not support references to subordinate fact extractors
inside option constructs such as alternative ('|'), optional ('?', '*', '+') or look-ahead and
look-behind. For example <Month>? is not supported. Please refer to the Fact Extractor
Workbench online help [12] for more details.

Concepts introduced:

Subordinate fact extractors represented as <subFXname>.
FIELD() function to recover one field from a subordinate fact
Nested subgroups.
VALUE() function to access another field from the current fact.

5.11 Linking Back to Previous References of a Fact (Co-reference)

Assisted reading only requires highlighting those parts of the text which match some
patterns. To accurately populate a database, a deeper analysis is required. This
includes being able to recognise whether a new reference is introducing a new fact, or
an additional reference to an already discovered fact. Co-reference rules allow the fact
extractor developer to specify that some fragments of text are just further references to
a fact discovered earlier. This is frequently necessary to make sure that additional
information collected by expand rules is assigned to the right fact.

As the pattern in a co-reference rule is necessarily vague, co-reference rules usually
have a guard expression to ensure that the right fact is found in the fact cache.

For example, the Person fact extractor described in section 5.6 had three fields (title,
firstname and surname). The person might be referred to later by just their first
name. A co-reference rule to capture this would have a pattern and guard expression
such as

18 This is deliberately a simple example that doesn’t consider all cases such as guessing the century for a
2-digit year. Refer to Section 7.2 for a more complete Date example.

 DSTO-TR-1729

19

Pattern: [A-Z][a-z]+
Guard: EQUAL(VALUE("firstname"), MATCH("0"))

The pattern is quite vague, and matches any single word starting with a capital letter.
The guard expression is used to limit the rule to only apply if the matched word has
already been identified as a person's first name. The rule will search back through
previously found Person facts and evaluate the guard expression for each Person fact
until it finds one that allows the guard expression to be true, or runs out of previous
facts. When a person fact that satisfies the guard expression is found, then this piece of
text is added as another reference to that person, and any actions in the co-reference
rule are performed on that fact. Co-reference rules can also be used for pronouns.

Concepts introduced:

Co-reference rules.
Guard Expressions in co-reference rules search back through previous facts.

5.12 Expand Rules

Often the attributes of non-trivial concepts are spread over several sentences. Generally
it is possible to decide what is the key aspect and a fact extractor create rule can be
developed to extract a fact based on it. However create rules can only be used to find a
fact within one sentence. Fact Extractor Expand rules are used to recover extra attribute
information gleaned from subsequent sentences. They may also be used to recover
extra optional information from within the same sentence.

The expand rule pattern must describe the connection back to the previously found fact
that it is expanding. The special reference of <self>19 is used to refer to a previously
found fact. The connection to the previous fact could come from either a create rule or
a co-reference rule.

An example is a hospital visit fact extractor looking for information from the text

"Mr Smith was taken to hospital with a high temperature. The patient was
also complaining of a severe headache. He also had a rash."

If the information to be extracted is to be used to complete a hospital visit record,
clearly the first sentence has a hospital visit fact and a create rule should be used to
recover this information. The second and third sentences have extra information about
the admission but neither of them should create a hospital visit fact. Expand rules, in
conjunction with co-reference rules, are used to recover this supplemental information.

Returning to the example, the HospitalVisit fact extractor has two fields:
symptoms and patientName. Two subordinate fact extractors are also used. They are
person and symptom; their description is omitted for brevity. The HospitalVisit
fact extractor has a create rule that looks for evidence of a hospital visit. Clearly a real
implementation would have a number of create rules.

19 <self> is the same notation as a subordinate fact extractor but the behaviour is quite different.

DSTO-TR-1729

20

Create rule 1:
Pattern: (<person>) was taken to hospital
Action: patientName = FIELD("1", "FullName")

In this example the HospitalVisit fact extractor has two co-reference rules. The first
looks for references characterised by the term “the patient”. The second co-reference
rule uses the subordinate person fact extractor to find references to a person and then
uses a guard expression to ensure that the person name matches the patient’s name.
This rule does not specifically identify whether the patient is identified by name or a
pronoun, that task is left to the subordinate person fact extractor.

Co-reference Rule 1:
Pattern: [Tt]he patient

Co-reference Rule 2:
Pattern: (<person>)
Guard Expression: EQUAL(FIELD("1", "FullName"),

VALUE("patientName"))

The two expand rules collect extra information about the hospital visit, either from the
sentence that invoked the create rule or from subsequent sentences.

Expand Rule 1:
Pattern: <self> with (<symptom>)
Action: symptoms = CONCAT(VALUE("Symptoms"), ", ", MATCH("1"))

ExpandRule 2:
Pattern: <self>((is|was|has))?((also|sometimes|often))?

(complain(ing|ed) of|reported|had) (<symptom>)
Action: symptoms = CONCAT(VALUE("symptoms"), ", ", MATCH("7"))

Concepts introduced:

Expand rules.

5.13 Reducing the Range of a Match

It is sometimes useful to be able to use the pattern to match more text than is required
by the final fact. For example a person fact extractor that uses a rule based on
capitalisation may include in the rule a set of verbs that a person is likely to do;
however this would result in a fact that is “too long” in terms of the amount of text it
matches. The text extent of the match is important if the range is being used for
marking up the document for display, or saving the original text. It also matters if later
expand rules extend a fact, as they need to find the fact at the right place in the text.

The fact extractor system has a way to reduce the range of the matched text provided
pattern groups “(…)” are used in the expression. The "special field" matchrange may
be assigned a pattern group number which reduces the recorded text extent to only
that pattern group.

 DSTO-TR-1729

21

Pattern: ([A-Z][a-z]+) (<verb>)
Actions: matchrange = "1"
 Name=MATCH("1")

Concepts introduced:

matchrange.

5.14 Execution Speed Considerations

This section provides an overview of the performance issues that may need to be
considered when using fact extractor design patterns; a separate report[14] provides a
more detailed analysis of the execution speed profile of the DSTO Fact Extractor
system. The following points should be taken into consideration.

• In general, performance will only be an issue for fact extractors run in an
automatic mode. When developing fact extractors for an assisted reading or
user assisted data base population task, performance is very unlikely to be an
issue and can be safely ignored.

• There is a fixed cost in processing a document combined with a variable cost
based on the complexity of the fact extractor(s) being applied. There is also a
small cost for each fact found, including the facts found by subordinates.

• Each rule is evaluated for every sentence in the document, so a fact extractor
with many rules will be slower than one with few rules.

• Create rules and Expand rules have a similar processing overhead. Co-reference
rules can have a significant overhead for each pattern match as the guard
expression is then evaluated for every existing fact. The pattern for a co-
reference rule should therefore not be too loose if it can be avoided.

• In general, due to the way regular expressions are processed, longer patterns do
not take significantly longer to execute. However, it is possible to construct
specific examples that execute very poorly in certain circumstances[4].

• Subordinate fact extractors only have a minor overhead; just consider the
number of rules in your subordinate and the likely number of facts they will
generate. Use subordinate fact extractors if they simplify the extraction task. Be
careful that subordinates don’t end up generating many facts per sentence,
particularly if the majority of these facts will not be used. Subordinate fact
extractors can be tested in either FormFiller or the Fact Extractor Workbench to
see how many facts they would create.

• In general patterns evaluate faster than guard expressions. It is inefficient to
define patterns that frequently match and then use a guard expression to
discard most matches. It is more efficient to put as much of the logic as possible
into the patterns.

• When trying to match any word from a list of words consider using a List Fact
Extractor (introduced in section 5.3). List Fact Extractors offer significant

DSTO-TR-1729

22

performance gains over multiple trivial create rules or long patterns with many
simple alternatives. If there are more than twenty items in your list it is sensible
to employ a List Fact Extractor, perhaps as a subordinate fact extractor. If there
are hundreds of items in your list it is highly desirable to use a List Fact
Extractor for clarity and execution performance.

• Due to the ways that interactions with previously found facts are processed,
documents that contain a very large number of facts (thousands) will suffer
degrading performance. Create rules scan existing facts checking that a
“larger” rule hasn’t already matched the text in question. Co-reference rules
scan existing facts backwards and re-evaluate the guard expression looking for
a fact to co-reference. Expand rules scan existing facts backwards looking for
the original fact to expand. This should not be an issue if fact extractors are
used in their design domain, for example news stories, but may become a
problem if applied to very large fact-rich documents, for example large log files.

6. Overview of the Fact Extractor Development
Process

Information extraction systems can be time consuming to set up. One of the main
reasons for this is that making machines understand unstructured text is hard – much
harder than most people realise. The DSTO fact extractor system provides a set of
integrated tools to assist a person to set up an information extraction system. Typically
we would expect this to be the task of a knowledge engineer, someone who is familiar
with the tool suite and the information extraction process. The knowledge engineer, in
close collaboration with the subject matter specialist (end user), then develops the
required set of fact extractors using the fact extractor workbench.

Although the Fact Extractor Workbench [12] does not prescribe any particular process
to be followed when developing a fact extractor, the knowledge engineer will find their
job is easier if they follow an organised process. Figure 1 provides an overview of the
recommended steps involved in developing a fact extractor. The remainder of this
section expands on these steps.

 DSTO-TR-1729

23

Obtain a corpus of documents

Determine your information need

Examine the corpus

Generalise your observations

Develop your Fact Extractor

Test your Fact Extractor

Deploy your Fact Extractor

Design your Fact Extractor

Figure 1: Overview of the Fact Extractor Development Process

6.1 Identify the Information Need

Before a fact extractor is developed the knowledge engineer must determine the
information need. This will include consideration of:

• What information is to be extracted?

• What is a useful representation of the information?

• How will the information be used?

What is to be extracted needs to be agreed with the end user and is not considered
further here. How the information is represented also needs to be decided in
consultation with the end user, but it is worth taking into account possible future reuse
of the fact extractor. For example, the end user may have no preference between
representing a date as a string of letters or separating it out into day, month and year.
However the day, month and year form may be beneficial to a subsequent user
wishing to perform range calculations on the dates. How the information will be used
will significantly impact on the accuracy requirements of the fact extractor. Fact
extractor usage and accuracy implications were discussed in Section 2.

The goal of this first step is to identify a set of attributes that adequately cover the
information need. These attributes are then turned into a set of field names and the

DSTO-TR-1729

24

goal of the rest of the process is to develop the rules that populate field entries from the
text. It is likely that the field names may be modified during the development process
as certain representations of the information may turn out to be easier to work with20.

6.2 Collect a Corpus of Representative Source Documents
Fact Extractors get information out of text, but are typically tailored to the text they will
be used on. For this reason, before the knowledge engineer can begin to solve the
information extraction problem, they need to get a significant and representative body
of real text (a corpus) over which the information extraction activity is to occur.

Using a real corpus will allow characteristics of the text (perhaps a capitalisation
convention) to be exploited. A real corpus should also allow the knowledge engineer
not to bother developing rules that match theoretically possible patterns that turn out
to not be in actual texts.

6.3 Examine the Corpus
Before commencing the development of the fact extractor it is recommended that the
knowledge engineer examine a sufficient portion of the corpus to identify the forms in
which the required information of interest may occur. It may be beneficial to print
some interesting examples from the corpus, highlight the text that suggests a fact and
write down the attributes that should be discovered. While examining the corpus the
knowledge engineer should consider what sort of text would identify a new fact and
what sort of text adds value to an existing fact. The results of this analysis should be
discussed with the end user. It will often be found that there is not automatic
agreement on what constitutes an interesting fact and some discussion may be
required.

Since it may not be possible for the developer to examine every document in a large or
growing corpus, it will be necessary to obtain a representative document subset. The
“owner” of the corpus should be consulted on sampling strategies. Sampling
considerations include the need for longitudinal sampling in cases where the subject
matter, style or format of the documents has evolved over time, and the need for
adequate coverage of the possibly disparate types of content in the corpus. If the facts
are sparse, it may be useful to create a synthetic document with denser facts by
copying relevant sentences out of multiple documents.

6.4 Generalise Your Observations
Corpus analysis alone is not sufficient to develop an effective fact extractor. Any real-
world knowledge that is available to help the task should be considered; for example:-

20 Consider the example of a person fact extractor. The attribute we are trying to find is “the person’s
name” we might represent it as one field called name, or choose to use three fields firstname, initial,
Surname. Co-reference resolution based on the person’s firstname will be much easier if the three field
model is chosen.

 DSTO-TR-1729

25

• If the information required is defined by a standard (for example an e-mail
address) then the standard should be consulted.

• It may also help to create a synthetic document with examples of similar text
that should not match.

• If the information need is from well-structured documents, style guides for
those documents may provide extra clues.

• Use common sense; for example, when developing a date fact extractor it makes
sense to include all of the months of the year, even though the sample corpus
might not contain any references to December.

Each of these points should be considered in conjunction with the corpus analysis.

6.5 Consider the Design

The next step is to consider the overall design of the fact extractor. It should start with
checking to see if any previously developed fact extractors with a similar information
extraction need might offer some insight into how to solve this task. As well as a
candidate design for the primary fact extractor, this analysis may also lead to the
discovery of one or more existing subordinates that may assist the task. Developer
experience has shown that as fact extractors tend to be tuned to a particular corpus it is
often more productive to reuse the design concepts from previously developed fact
extractors as opposed to extending an existing fact extractor.

At this point it is appropriate to consider if just a single fact extractor will be developed
or if the design will involve one or more subordinates. If an existing subordinate is to
be reused, consider whether it will be easier to maintain it as a subordinate used by
more than one composite, or if it is better to make a copy of the subordinate just for this
information need. Use of a subordinate by more than one composite reduces the
number of fact extractors that need to be maintained. Making a copy allows the
developer to modify the subordinate for this information need or corpus, without risk
of damaging the previously working composite used for a different task. The choice is
normally influenced by how generic the subordinate information need is.

The next step is to consider what rules need to be developed to extract the information.
The corpus analysis should have identified words that trigger the creation of a new
fact. A set of create rules are developed to extract these facts. If the attributes of a single
fact span more than one sentence, then a set of expand rules will need to be developed
to extract these extra attributes. Expand rules will usually require the development of
appropriate co-reference rules to link the partial facts together.

For each rule identified above the designer will need to develop a pattern expression
that matches the text and action expressions that recover the information. Some
patterns are hard to tightly define in the pattern language; instead the designer may
need to employ loose patterns and then restrict the matching with appropriate guard
expressions. As described in section 5.14 guard expressions can be a significant
performance overhead if the pattern matches too freely.

DSTO-TR-1729

26

6.6 Develop

After considering the general design of the fact extractor and any subordinates it is
time to commence the development process. It will assist the future maintenance of
the fact extractor if appropriate comments are added to the description section of each
fact extractor explaining the intended use of the fact extractor and recording any
interesting design and development decisions.

The development process starts by entering the field names that were chosen in the
information need and design steps. If new (or copies of existing) subordinates were
identified in the design step then fact extractors should be created for each of these and
their field names should be entered. Through the use of multiple edit windows the Fact
Extractor Workbench [12] supports the parallel creation of multiple fact extractors. It is
a user preference to consider each identified subordinate as a separate fact extractor
with its own information need or to develop the set in parallel. Experience has shown
that the knowledge engineer will often oscillate between these two modes of
development.

After entering the field names and initial comments, the next step is to develop the
patterns that match the text. The create rules should be developed first as it is not
possible to test co-reference or expand rules until the matching create rules are
working. It is often easiest to try various patterns or parts of patterns in the corpus
browser window and when satisfied cut and paste them into a rule.

If a need for co-reference or expand rules was identified during the design process,
these should now be developed. Note that like create rules, patterns (without the
<self>) for expand and co-reference rules can be experimented with in the corpus
browser window. These patterns can include references to subordinate fact extractors.

6.7 Test

The fact extractor workbench supports an incremental design and test process. Once
the initial development work has been done, the fact extractor should be tested against
each document in the corpus. Inevitably examples will be found where the fact
extractor does not perform as expected. In each case the knowledge engineer needs to
decide whether to modify the fact extractor or accept the error. Section 2 discussed the
accuracy requirements for different types of information extraction tasks.

If the decision is to modify the fact extractor then the knowledge engineer must verify
that this new modification does not introduce errors where it was previously
performing correctly. To do this the previous documents in the corpus should be
retested. This type of testing is known as regression testing. The fact extractor
workbench incorporates integrated support for regression testing. It is suggested that
snippets of interesting text (perhaps at the paragraph level) be copied to a test
document, and this document be used for routine regression testing. Depending on
the quality requirements of the fact extractor under development, the complete corpus
can be re-examined as part of a quality assurance process.

 DSTO-TR-1729

27

6.8 Deploy

Once the group of fact extractors for the task have been developed and tested, the
knowledge engineer can issue them to the end-users. This will typically involve
placing the fact extractor files in a shared folder or on an intranet website so that they
can be accessed. The user needs to ensure that their fact extractor environment accesses
the right folder or web location to find the new fact extractors.

6.9 Collaborative Development

To develop complex fact extractors, the developers might find that some degree of
collaborative development is beneficial. This may range from an ad hoc discussion to a
formal review of the proposed Fact Extractor. This collaboration should consider what
constitutes a trigger to identify a new fact (i.e. the create rules) as distinct from adding
attributes to an existing fact (i.e. the expand rules). The collaboration should also
consider appropriate use of subordinate fact extractors.

Fact extractors can be shared amongst a workgroup by placing them on a shared file
system or a web server.

7. Examples of Developing Fact Extractors

This section uses examples to explore the issues in developing real fact extractors. For
each example we introduce an information need, and work through the steps
introduced in section 6. Patterns and actions in this section may be spread over
multiple lines for clarity or typesetting purposes, but must be entered as a single line in
the fact extractor editor.

The fact extractors introduced in this section are included in the FXLib folder of the
software distribution. Many patterns here explicitly use “\s” rather than a space
character for clarity. Either is acceptable.

7.1 Extraction of Tightly Structured Objects

This section introduces four fact extractors to discover strictly defined facts:
• Internet Protocol Addresses
• Email Addresses
• Uniform Resource Locators
• Telephone Numbers

Many of these are driven by international standards, and consequently have tightly
defined structures.

DSTO-TR-1729

28

7.1.1 Internet Protocol (IP) Address

An IP address consists of a group of four number numbers, each in the range 0-255 and
separated by dots. For example 123.223.111.4 .

1) Identify an information need: What IP numbers are referenced in a stream of
communications21. A fact extractor can satisfy the information required with a single
field called IPNum.

2) Collect a relevant corpus - a set of example documents containing the information
you require, collected from the stream you will be using this fact extractor on.

3) Examine the Corpus to find how IP numbers are represented in these documents.
They are always represented as four numbers separated by dots. There is no white
space inside the IP number, and each number is up to 3 digits long, but numbers less
than 100 do not have leading zeros. Consider also whether the corpus contains
numbers which are not IP addresses but which match, or are similar to, the
specification of an IP address.

4) Generalise your observations by any other knowledge, for example the largest legal
value for any number is 255.

5) Think about designing your fact extractor. In this case, there is either an IP number,
or there isn't, and all required information is contained in it. So there will be a single
Create Rule in your fact extractor, and no Expand Rules. Since we are not looking for
extra references to an IP number once it is found, we don't need any Co-reference Rules,
either.

6) Develop your fact extractor. Write the regular expression pattern for your rule. A
simple regular expression which matches all IP numbers is
[12]?[0-9]?[0-9]\.[12]?[0-9]?[0-9]\.[12]?[0-9]?[0-9]\.[12]?[0-9]?[0-9]

This pattern will also accept a few strings which are not valid IP numbers, if an octet's
value is between 256 and 299 inclusive. For performance reasons, you may be prepared
to accept these rare false positives.

Check that the pattern is matching what you expect it to match, and then write the
actions to go with it. In this case, the action is very simple, and is simply

IPNum = MATCH("0")

7) Test your fact extractor. In this example it will help to create a test document that
has a range of valid and invalid IP addresses. Remember to test IP addresses at the
beginning, middle and ends of sentences. After the basic behaviour has been confirmed
continue testing on a range of real documents.

Further considerations: If the false positive matches are not acceptable, you need to use
parentheses to separate out each group, and use a guard expression to test each match
group for being in the right range. This could result in a complex guard expression. It

21 A related information need would be to reason about subnets. In this case each octet might be extracted
to a separate field.

 DSTO-TR-1729

29

may turn out to be simpler to create a subordinate fact extractor to find each octet. In that
case, the main fact extractor pattern would become "(<octet>)\.(<octet>)\.
(<octet>)\.(<octet>)". The pattern of octet should be [12]?[0-9]?[0-9]
with a guard expression such as LESSTHAN(MATCH("0"), "256") to ensure the
number is in the right range. Note that LESSTHAN was not a standard function in
earlier releases of the Fact Extractor System.

In the future, this fact extractor may need to be revisited to upgrade it to recognise IP
version 6 addresses as well as the older version 4 addresses.

7.1.2 Email Address

1) Identify an information need: Internet (SMTP) email addresses.

Email can also be sent by other protocols such as X.400, Lotus Notes or Microsoft
Exchange which have different address formats and these are not considered further in
this example. The information can be represented by a single field called address.

2) Collect a relevant corpus - a set of example documents containing the required
information, collected from the stream on which this fact extractor will be used. Even
people who use other email systems actually quote their internet-style address in
documents, so that is the only style of address required of this fact extractor.

3) Examine the Corpus to find how email addresses are represented in these
documents. They are always represented as <user>@<host or domain>. Sometimes
they are next to "mailto:" or contained in "<…>", but not always. They never have
spaces.

4) Generalise the observations by any other relevant knowledge: This might include
checking the standards (RFC822 and its successors) for legal characters and for the
complete list of Top-Level Domains (TLDs).

5) Think about designing the Fact Extractor. In this case, an email address is a
sequence of letters and similar characters, an '@', and another sequence of characters
and dots. So there will be a single Create Rule in the Fact Extractor.

6) Write the regular expression pattern for the rule. A simple regular expression which
matches these addresses is

 [A-Za-z0-9\.&\-_]+@[A-Za-z0-9\.\-]+\.[A-Za-z]+
This pattern does not attempt to ensure that the string ends with a valid TLD.

7) Test the FX. Verify that it is finding expected addresses, and none that are not.

Further considerations: If there is a requirement to ensure that strings are only
accepted if they end with a real TLD, make a subordinate TLD Fact Extractor (probably
as a list), and then replace the last '[A-Za-z]+' with '(<TLD>)'. Another
consideration might be to add a DisplayName field to the fact, and attempt to
populate it with the human-readable name of the person who uses that address. Often
this is provided near the email address, but not always.

DSTO-TR-1729

30

7.1.3 URL

A Uniform Resource Locator (URL)22 provides a reference to a resource. The most
common examples are references to web pages such as http://mypage.com.au but
there are many other kinds: for example ftp://myhost/mydocument.doc. This
example only considers URLs in documents not URLs behind anchors in web pages.
Parameters following a URL are not considered part of the URL.23

1) Identify an information need: Recover URLs in documents. For this example there
are three fields, protocol, Hostname and URL. At this point consider whether the
need is to be sure to only collect valid URLs or if it is to collect patterns that are similar
to URLs. For example is the fact extractor required to discover text that the author
intended to be a URL but, perhaps due to poor typing, is not actually a valid URL? In
most cases it will be appropriate to leave strong checking to a subsequent processing
step.

2) Collect a relevant corpus - a set of example documents containing the required
information, collected from the data source that will be used by this fact extractor. This
would probably identify whether HTML is important, or only plain text.

As fact extractors are designed to operate on English text independently of the file
format or data representation, HTML markup is usually ignored by the fact extractor
system apart from using it to identify implicit sentence breaks through paragraph
block analysis. In this particular example, it is possible that the URLs of interest are
part of that markup, so fact extractor users might wish to process HTML files as plain
text files for this purpose. Information on how to tell the fact extractor to treat files in
different ways is included in the online help of the Fact Extractor Workbench [12].

3) Examine the Corpus to find how URL’s are represented in these documents. It is
quickly noticed that there is a big difference in the way URL’s can be described in
HTML files compared to plain text documents. For this example it is assumed that the
documents are plain text. Sometimes when the protocol is HTTP it is omitted. For
example http://www.mypage.au is frequently abbreviated to www.mypage.au.

4) Generalise the observations by any other knowledge: URL’s are defined by
standards so it is sensible to consult these standards.

5) Think about designing your Fact Extractor. In this case the general form of a URL is
<scheme>:<scheme specific part> so it makes sense to have a create rule for each
scheme that you care about plus an extra rule to deal with examples where the scheme
is omitted. An alternate approach is to create a subordinate for each URL scheme and a
primary fact extractor that integrates the subordinates. The second approach may assist
fact extractor re-use and assist subsequent maintenance.

22 Note that URL is an informal term associated with popular Uniform Resource Identifier (URI)
schemes; see the World Wide Web Consortium for a discussion on addressing schemes[15].
23 In fact the current implementation of fact extractors are unable to extract the parameters following the
“?” in a URL. The default sentence processing considers a question mark to signify an end of sentence
and effectively breaks the URL. It is expected that a future release of the fact extractor system will allow
some degree of user tailoring of the sentence breaker to address this and related issues.

 DSTO-TR-1729

31

6) For each scheme to be implemented, write the regular expression pattern for the
rule. The following rule matches a simple HTTP URL.

Pattern: http://([_a-zA-Z0-9\.-]+)(/[_a-zA-Z0-9\.-]*)*
Action protocol = "HTTP"
 URL = MATCH("0")
 Hostname = MATCH("1")

The next rule matches a simple HTTP URL that is missing the formal “http://”. It is
inferred that this is a HTTP URL from the common practice of starting the hostname
with “www”.

Pattern: (www\.[_a-zA-Z0-9\.-]+)(/[_a-zA-Z0-9\.-]*)*
The actions are similar to the first rule.

A third pattern collects FTP-based URLs. The first grouping deals with FTP requests
that contain a user name.

Pattern : ftp://([_a-zA-Z0-9\.-]+@)?([_a-zA-Z0-9\.-]+)
 (/[_a-zA-Z0-9\.-]*)*
Hostname is now the second match otherwise the actions are similar to the first rule.

7) Test the FX. In this example it makes sense to construct a document that has a wide
set of legal (and illegal) URLs. After the basic behaviour of the fact extractor has been
confirmed, continue testing on a range of real documents.

Further considerations: A fully developed fact extractor should consider the
implications of Universal Resource Identifiers as opposed to Universal Resource
Locators.

7.1.4 Phone Numbers

1) Identify an information need: Discover telephone numbers. Telephone numbers can
be for mobile or landline telephones, and may include area codes and/or country
codes. They can also be represented in different ways. Ideally, the fact extractor should
be designed to discover all of these. The information need can be met with a single
field, Number.

2) Collect a relevant corpus: A set of example documents containing the required
information, collected from the intended data stream such as emails, news stories,
company reports, etc. Whatever the source, the corpus should be a representative set of
documents used for developing and subsequently testing the fact extractor.

3) Examine the corpus to find out how telephone numbers are represented in it.

4) Generalise the observations by any other knowledge: If the corpus uses only a
limited set of ways of representing telephone numbers, include additional commonly
used representations to make the fact extractor more generic. Some ways that

DSTO-TR-1729

32

telephone numbers are represented include: +61 8 8259 1234, (08) 8259 1234,
08 8259 1234, 8259 1234, 82591234, 08-8259-1234, x91234, 0409 123 456

5) Think about designing the Fact Extractor: One way of categorising representations
for telephone numbers may be as follows:

• Local numbers
• Numbers with country and area codes
• Numbers with area codes
• Mobile numbers
• 1 800 and 1 300 numbers
• 13 xxxx numbers
• 5-digit extensions

Using this categorisation scheme, seven rules were defined, one for each category. An
alternative design would have been to use a subordinate fact extractor for each of the
categories of telephone numbers and put them together in the top-level fact extractor.

6) For each category of telephone number, write the pattern and action for the rule.
Patterns and actions for the seven create rules are detailed below.

Rule1 finds local phone numbers of the form: xxxx xxxx or xxxx-xxxx. The pattern for
the rule is divided into two groups; the first locates the first four digits of the number,
followed by an optional space or hyphen, followed by the second group which locates
the next four digits of the number. The \s regular expression term is used to match
white-space characters including space, tab or newline. The pattern and action for this
rule are:

Pattern: (\b([0-9]{4})[\s-]?[0-9]{4})
Action: Number = MATCH("1")

Rule2 finds international phone numbers with a country and area code. It can match
phone numbers of the form +xxx xxxx xxxx, and the US forms: +1(xxx) xxx xxxx or +1-
xxx-xxx-xxxx. The embedded spaces in the phone number are optional, the pattern
and action for this rule are:

Pattern: ((\+(([0-9]){3}[\s-]?)(([0-9]){4}[\s-]?){2})|
 (\+1\(?[0-9]{3}\)?[\s-]?[0-9]{3}[\s-]?[0-9]{4})))
Action: Number = MATCH("1")

Rule3 finds phone numbers with an area code. It can match phone numbers of the
forms: (08) xxxx xxxx or 08-xxxx-xxxx. The parentheses around the area code and any
embedded space or hyphen are optional. The pattern and action for this rule are:

Pattern: ((\(?([0-9]){2}\)?)[\s-]?(([0-9]){4}[\s-]?)([0-9]){4})
Action: Number = MATCH("1")

Rule4 finds a mobile phone number. It can match phone numbers of the form xxxx xxx
xxx, and allows for an optional embedded space or hyphen. The pattern and action for
this rule are:

 DSTO-TR-1729

33

Pattern: ((([0-9]){4})([\s-]?([0-9]){3}){2})
Actions: Number = MATCH("1")

A telecommunications regulatory authority could have been consulted for specific
information on the allowable first four digits of mobile numbers, to ensure better
accuracy. However, to keep the example simple it accepts any four digits.

Rule5 finds 1-800 or 1-300 phone numbers. It can match phone numbers of the forms: 1-
800-xxx-xxx or 1 300 xxx xxx, and allows for an optional embedded space or hyphen.
The pattern and action for this rule are:

Pattern: \b(1[\s-]?[38]00([\s-]?([0-9]){3}){2})
Action: Number = MATCH("1")

Rule6 finds a 13-xxxx phone number. It can match phone numbers of the forms: 13x
xxx or 13 xx xx. It allows for an optional embedded space or hyphen between the
groupings of digits in both forms. The pattern and action for this rule are:

Pattern: (13[\s-]?((([0-9][0-9][\s-]?){2})|
 ([0-9][\s-]?[0-9]{3})))\b
Actions: Number = MATCH("1")

Rule7 finds 5-digit telephone extensions in various forms, including: xzzzzz, Xn zzzzz,
on zzzzz, Extn zzzzz, ph: zzzzz. The pattern for this rule looks for an optional prefixed
string matching the first parenthesised group, followed by a set of 5 digits representing
the telephone extension in the second. The pattern and action for this rule are as
follows:

Pattern: \b([Oo]n|[Pp]h:?|[Extn]|[Xx]n|X|x)?\s?
 (([0-9]){5})\b
Actions: Number = MATCH("2")
 matchrange = ”2”

Rules with more complex regular expressions appear before rules for the simpler ones
in this example. This is coincidental as all create rules are evaluated and the fact
discovered is the one corresponding to the rule with the longest match (see section
4.4.3 for details on processing create rules).

7) Test the fact extractor. Verify that it is finding all the expected telephone numbers
and none that are not. For testing the fact extractor, it might be helpful to create a
sample document with telephone numbers represented in all the expected formats. For
completeness the document should also include other reasonable groupings of
numbers that are not intended to be discovered as telephone numbers.

DSTO-TR-1729

34

7.2 Dates and Times
This next section considers two temporal fact extractors: dates and times.

7.2.1 Dates

1) Identify an information need: For this example the information need is to find dates
in a document. This could be represented by a single field called ISODate that
conforms to the ISO specification for dates; however this example uses a three field
representation consisting of day, month and year.

2) Collect a relevant corpus - a set of example documents containing dates, collected
from the data source this fact extractor will be used on.

3) Examine the corpus: dates are represented in many ways, for example:

12/8/03
8/12/03
2003-08-12
20030812
12 Aug 2003
12 August 2003
August 12, 2003
Yesterday, tomorrow
120000Z Nov 2003 (Military Date-time group)

4) Generalise your observations by any other knowledge: In this example apply some
common sense: use the knowledge that there are twelve months in a year and a defined
number of days in each month. The names and likely abbreviations of the months are
also known.

5) Think about designing the Fact Extractor. A tractable approach is to have a create
rule for each kind of date representation. To help with the maintenance of the fact
extractor it is good practice to name the rules in a way that conveys the pattern they are
targeting, for example “dd mm yy” or “dd month yyyy”. This example uses a
subordinate fact extractor (DEF_Month) to recognise and handle month names and
abbreviations. The design should consider how to handle partial dates as documents
might not always fully qualify dates. They may be newspaper articles where the year is
derived from the beginning of the article or the date of publication. A separate
publication date fact extractor may be required to capture these details, which may be
accessed from the actions of the date fact extractor. Unfortunately, these sorts of
extensions are usually closely related to the document corpus, and as such cannot be
adequately addressed here. This example attempts to resolve dates that are lacking a
year, but no other partial dates.

6) Write a pattern for each rule. Test each pattern against valid values and invalid
values. It is of assistance to manually produce a test document that has a collection of
example dates and non-dates. When the patterns successfully match the dates complete
the actions to extract the information and test again.

 DSTO-TR-1729

35

The first rule catches dates containing day, month and year in that order, with spaces
or common separators between the parts. A range of separators (white-space, ‘.’, ‘/’and
‘-‘) is accepted (subgroup 2), and a back-reference24 (\2) is used to ensure that the
second separator is the same as the first one.

Rule: Day/month/year
Pattern: \b(0?[1-9]|[12][0-9]|3[01])(\s?[\s./-]\s?)(1[0-2]|0?[1-
9])\2(([12][0-9])?[0-9]{2})\b
Actions: Year = MATCH("4")
 Day = MATCH("1")
 Month = MATCH("3")

There is a similar rule for detecting American-style notations putting the month first.
Switching the order of these two rules in the fact extractor changes which one is
preferred if both match, as can happen in the first 12 days of each month.

Rule: Month Day Year (American)
Pattern: \b(1[0-2]|0?[1-9])(\s?[\s./-]\s?)(0?[1-9]|[12][0-
9]|3[01])\2(([12][0-9])?[0-9]{2})\b
Actions: Year = MATCH("4")
 Day = MATCH("3")
 Month = MATCH("1")

A Military Date-time group (DTG) rule recognises dates specified as part of a DTG.
These have the day of month, then the time (with time zone), usually followed by the
month and year, although these are sometimes left out where the author believes they
are obvious from the context. There is usually no space between the date and time
parts, although one source of operational reports in the sample corpus consistently
used a space, so this rule accepts an optional space.

Rule: Military Date-Time Group (DTG)
Pattern: ([0-3][0-9])\s?([0-2][0-9])([0-5][0-9])[A-Z]
(<DEF_Month>) (([12][0-9])?[0-9]{2})
Actions: Day = MATCH("1")
 Month = FIELD("4", "asDigit")
 Year = MATCH("5")

The next two rules handle dates with only a day and month, as the year can usually be
guessed from an earlier reference. This requires two rules to handle both day/month
and month/day forms. The CACHE() function is used to get the year from the most
recently found date.. This may not be appropriate if the corpus frequently talks about
annual events, such as "Anzac Day is on April 25", because it will choose some year
which might not be useful.

Rule: Day Month, guess year
Pattern: \b(0?[1-9]|[12][0-9]|3[01])(\s)(<DEF_Month>)\b
Actions: Day = MATCH("1")
 Month = FIELD("3", "asDigit")

24 Back-references are a regular expression concept used here to ensure that the same symbol is used
between month and year as is used between day and month. This avoids constructs such as 02/07-23
being recognised as a date.

DSTO-TR-1729

36

 Year = CACHE("DEF_Date", "Year", "unknown")

Rule: Month Day, guess year
Pattern: \b(<DEF_Month>)(\s)(0?[1-9]|[12][0-9]|3[01])\b
Actions: Day = MATCH("3")
 Month = FIELD("1", "asDigit")
 Year = CACHE("DEF_Date", "Year", "unknown")

ISO Date formats are fixed lengths. The year always occupies 4 digits; month and day
are always two digits. For human reading, the fields are separated by dashes, but these
are optional for machine processing. This rule again uses a back-reference (\2) to
ensure that if one dash is present, they both are.
Rule: ISO Date format
Pattern: \b([12][0-9]{3})(-?)([01][0-9])\2([0-3][0-9])
Actions: Month = MATCH("3")
 Day = MATCH("4")
 Year = MATCH("1")

Other common formats for writing dates are January 12th, 2004 and 12th of January
2004.
Rule: month day, year
Pattern: (<DEF_Month>)(\s?)(0?[1-9]|[12][0-9]|3[01])

(st|nd|rd|th)?,\s(([12][0-9])?[0-9]{2})
Actions: Month = FIELD("1", "asDigit")
 Day = MATCH("3")
 Year = MATCH("5")

Rule: ordinal of month, year
Pattern: \b(0?[1-9]|[12][0-9]|3[01])(st|nd|rd|th)?(\sof)

?\s(<DEF_Month>),?\s(([12][0-9])?[0-9]{2})\b
Actions: Day = MATCH("1")
 Month = FIELD("4", "asDigit")
 Year = MATCH("5")

Some log-based documents represent dates as Month Day, time, year.
Rule: month, day, time, year
Pattern: \b(<DEF_Month>)(\s)(0?[1-9]|[12][0-9]|3[01])\s

([0-2][0-9]:[0-5][0-9]:[0-5][0-9])\s
(([12][0-9])?[0-9]{2})

Day = MATCH("3")
Month = FIELD("1", "asDigit")
Year = MATCH("5")

Relative forms of date such as "yesterday", "today", "tomorrow", and "three days ago"
cannot be readily included in a generic Date fact extractor. They are highly sensitive to
the particular corpus or document source being analysed. This is because they are
usually relative to the date of the report (or the date someone was quoted), rather than
to any surrounding dates in the text. As such, there usually needs to be a special
"report date" fact extractor written to recognise the date of the report, and then the

 DSTO-TR-1729

37

CACHE() function can be used to refer back to the “report date” fact from which
relative dates may be calculated.

This fact extractor sometimes reports single digit days and months with a leading zero.
The fact extractor software distribution includes DEF_Date with more complex actions
to trim out the leading zeros.

The fact extractor is tolerant of 2-digit years. In practice, all dates may be required to be
reported with 4-digit years. This requires a decision about which 100-year window the
2-digit years should be assumed to be in. The following action assumes two-digit years
in the range 1950-2049:

Action: Year = SUB(IF(LESSTHAN(MATCH("5"), "50"),
 ADD("2000", MATCH("5")),
 IF(LESSTHAN(MATCH("5"), "100"),
 ADD("1900", MATCH("5")),
 MATCH("5"))),
 "0", "4")

7.2.2 Times

1) Identify an information need: In this example the need is to identify a range of
references to times in a document. While it is possible to consider the need for well
specified times to be recovered from semi-structured files, like a log file, this example is
concerned with general references to times in free text. As it is unlikely that times by
themselves would ever be a sensible information need, this fact extractor is intended
for use with other fact extractors. Perhaps it could be part of a loose collection in the
FormFiller environment or used more tightly as a part of a composite fact extractor. As
a result a fair degree of over generation (false matches) can be tolerated. For this
example it was decided to collect time as hours and minutes on a twelve-hour clock.
An AM/PM flag describes the period and an optional time zone indicator could also be
included. The fields are named Hour, Min and Meridian.

2) Collect a relevant corpus - a set of example documents containing the information
you require, collected from the data stream this fact extractor will be used on.

3) Examination of the corpus reveals that times appear in a wide variety of ways, for
example:

16:44
16:44:56
4:45 PM
07:15Z
1644+0930
10 minutes ago
now

As the representation of these times is independent of actual usage in real text, it is of
benefit to construct a test document with a wide range of sample times interspersed

DSTO-TR-1729

38

within some dummy text. This test document was used to speed up the initial
development of the fact extractor; real documents should be used for final testing.

4) Generalise your observations with any other knowledge: Clearly the numeric
representation of a time is quite well constrained. We know that there are two twelve-
hour periods or twenty-four hours in a day and sixty minutes in an hour but the
textual representation of a time can be quite varied. For this example only times
represented as a collection of digits are found.

5) Think about designing the Fact Extractor: This fact extractor uses a straightforward
collection of create rules; co-reference and expand rules are not necessary.

6) Write the pattern and action rules. All of the rules are fairly similar so only the first
one is explored here. The first rule looks for an hours-minutes-seconds string. There is
nothing unusual in the pattern. A guard expression is used to eliminate some obvious
false positives by rejecting results that would lead to an invalid time. The first and
third actions handle hours greater than twelve and convert them back to a twelve hour
clock.
Rule: hh24:mm:ss
Pattern: (([0-2][0-9])[\.:]?([0-6][0-9])[\.:]?([0-6][0-9]))
Guard: AND(LESSTHAN(MATCH("2"), "24"),
 LESSTHAN(MATCH("3"), "60"),
 LESSTHAN(MATCH("4"), "60"))
Actions:
 Hour = IF(GREATERTHAN(MATCH("2"), "12"),
 FORMATNUMBER(SUBTRACT(MATCH("2"), "12"), "I2"),
 MATCH("2"))
 Min = MATCH("3")
 Meridian = IF(GREATERTHAN(MATCH("2"), "11"), "PM", "AM")

The other create rules deal with variations on the possible representation of a time. In
cases where more than one create rule could match the text the largest rule is used, see
section 4.4.3.

7.3 Names of People

This section introduces fact extractors that look for names of people (or organisations).
There are two fundamentally different approaches to this problem depending on
whether or not the set of names to be found is known.

7.3.1 Names from a List of Known Names

1) Identify an information need: For this example find names of people in a document
from a pre-existing collection of names. This information is represented by a single
field name.

2) Collect a relevant corpus - a set of example documents containing the required
information, collected from the data stream the fact extractor will be used on. In this

 DSTO-TR-1729

39

example the corpus is less important than usual as the list of required names is defined
elsewhere. The primary value of the corpus is to determine if the rate of false positives
can be tolerated.

3) Examine the corpus. It will most likely contain examples of the names used. There
might also be strings that are the same as a wanted name but are not actually a name.
There may also be examples of co-references like pronouns and name abbreviations.

4) Generalise your observations by any other knowledge you have. For a simple list of
known names, there is nothing extra to add here.

5) Think about designing the Fact Extractor. The obvious way to do this task is to
create a list fact extractor made up from the list of wanted names.

6) Write the list entries for the fact extractor. This can be done from within the fact
extractor development environment but it may be easier to capture the list of names
directly from other sources such as a database. The format for a list fact extractor is
one list item per line in a text file called <listname>.fx. An excerpt from the example list
fact extractor, “DEF_BaliBombingNames.fx” follows:
…
fikiruddin
fikiruddin muqti
fuad amsyari
hafiz ismael
haji acing
haji aceng suheri
haji ismail pranoto
haji khoir affandi
haji mansur
…
Notice that all the list items are in lower case. This allows the fact extractor to discover
matching list items in lower, upper as well as title case. If list items are written in
mixed or upper case, case-sensitive matching will occur. The information need can
help to decide which option is appropriate for your particular list fact extractor(s).

Further considerations: If this simple list fact extractor generates too many false
matches, or the information need requires capturing pronouns and abbreviations then
the use of a composite fact extractor is recommended. The composite fact extractor
would invoke the simple list fact extractor and also manage over-generation and co-
reference resolution.

7.3.2 Unbounded Names

1) Identify an information need: In this example the task is to extract words from the
text that represent names of people without knowing in advance the set of names. In
addition, it is required to pick up as many co-references as possible. This is intended to
be a low-precision tool which would be used to assist a human operator. It is not be
expected to be precise enough for automatic operation. The only field required is
fullname.

DSTO-TR-1729

40

2) Collect a relevant corpus - a set of example documents containing names, collected
from similar sources to what the fact extractor will be used on.

3) Examine the corpus. In an ideal world, the corpus would always introduce people
the first time with title, first name, and surname (such as Mr. Scott Davis), allowing
quite high accuracy. Unfortunately, this is not common in many styles of document.
For the purpose of this fact extractor, that information will be used if available, but in
this corpus, people are usually identified initially by first name and surname, and then
referred to just by their first name. The fact extractor looks for names based on the
capitalisation of words, which is prone to finding extra things which are not people's
names.

4) Generalise your observations by any additional knowledge: There are a number of
common titles used to address people, such as Mr, Mrs and Miss. The fullstops after
Mr and Mrs are frequently (but not always) left out in modern informal writing.

5) Think about designing the Fact Extractor. In this case, the use of co-reference rules
to match parts of the name (such as first name) requires the facts to have separate fields
for title, first name and surname. These fields will be filled in so that the full name field
contains a complete name (including title and middle names if provided), first name
and surname get a single word each. It is assumed that the last word in a person's
name is their surname, even though this is not always true in some cultures.

6) Write the fact extractor. The first create rule is for title, first name, last name and any
middle names provided.

Pattern: (Mr|Mrs|Miss|Dr|Doctor|Sir|Dame)\.?\s
([A-Z][a-z]+)(\s([A-Z][a-z]+))+

Actions: title = MATCH("1")
 firstname = MATCH("2")
 surname = MATCH("4")
 fullname = MATCH("0")

There may be quite a bit of effort in getting these regular expressions right. The ability
to test patterns in the corpus browser window is invaluable in experimenting with
spaces and parentheses to get a regular expression which accurately matches the
representation of names in your corpus. The pattern above matches names which start
with a title (with an optional fullstop), then have a first name and any number of other
names. The last capitalised word is used as the surname. It may appear odd that the
middle names (if any) are matched as earlier surnames, rather than as extra first names.
This allows the pattern to be a little simpler than if they were explicitly matched as
middle names. As group 3 is a repeating group containing group 4, MATCH("4") only
returns the last value matched by group 4. The first name needs to be kept separate to
fill the firstname field.

The next create rule is for the more common “firstname surname” form. It is just a
simpler version of the first rule, and also handles middle names.
Pattern: ([A-Z][a-z]+)(\s([A-Z][a-z]+))+
Actions: firstname = MATCH("1")
 surname = MATCH("3")

 DSTO-TR-1729

41

 fullname = MATCH("0")

However, this pattern also matches text where a title is used without a fullstop, in
which case the title would be erroneously treated as the firstname. The problem may
be avoided by forcing a negative lookahead (“(?!…)”) for titles before the first name.
The word “The” is also excluded as it indicates organisations not people:

Pattern: (?!Mr|Mrs|Miss|Dr|Doctor|Sir|Dame|The)
([A-Z][a-z]+)(\s([A-Z][a-z]+))+

Actions: firstname = MATCH("1")
 surname = MATCH("3")
 fullname = MATCH("0")

A third create rule is used to collect title, initials and last name. The title is optional in
this rule, but a word break at the beginning is enforced to ensure that an initial is not
picked up at the end of an acronym preceding a capitalised word.

Pattern: \b((Mr|Mrs|Miss|Dr|Doctor|Sir|Dame)\.?\s)?

(([A-Z]\.?)\s)+([A-Z][a-z]+))+([A-Z][a-z]+)
Actions: title = MATCH("1")
 surname = MATCH("5")
 fullname = MATCH("0")

A co-reference rule is used to detect reuse of the first name only:
Pattern: [A-Z][a-z]+
Guard expression: EQUAL(MATCH("0"), VALUE("firstname"))

A co-reference rule to detect formal references of the form Mr Davis:
Pattern: (Mr|Mrs|Miss|Dr|Doctor|Sir|Dame)\.?\s([A-Z][a-z]+)
Guard expression: AND(EQUAL(MATCH("1"), VALUE("title")),
 EQUAL(MATCH("2"), VALUE("surname")))

7.4 Placenames

Placenames may be found in a number of ways. First is looking for a list of known
places where any reference to them is interesting (the same as people’s names in
section 7.3.1). The simplest way to do that is just to have a list fact extractor that
contains all the interesting placenames. This is useful if some later process will plot
them on a map based on the names, or if the fact extractor is only being used as a filter
to highlight documents that might need to be read fully by someone. Some military
messages frequently contain a grid reference or geographic coordinates near a place
name, so a fact extractor could extract those as well. In other text such as news reports,
a place name can only be identified from its context, for example if something happens
"...at Mumble...", then Mumble is probably a placename (or a time!).

1) Identify an information need: In this case, this fact extractor was developed for a
JWID 200425 service to identify place names so a gazetteer service can be used to

25 JWID, the Joint Warrior Interoperability Demonstration will be known as CWID (Coalition …) from
2005.

DSTO-TR-1729

42

display them on a map. Where possible, it also identifies the type of place that the
name might represent.

2) Collect a relevant corpus - a set of example documents containing the information
you require, collected from the stream you will be using this fact extractor on. As the
details of the JWID scenario were not yet available, the corpus used for developing the
fact extractors was mostly drawn from internet web sites showing current news
reports. To ensure that the fact extractors were developed in a generic manner, a range
of different news web sites was used.

3) Examine the corpus. Looking at the corpus of news articles, it becomes difficult to
determine how even a human decides whether a word or group of words should be
considered as a place name. One indicator seems to be that a small group of
prepositions frequently appear before placenames, and that the words in a placename
are usually capitalised.

4) Generalise your observations by any other relevant knowledge. ISO 3166-1[11]
provides a list of official country names and codes.

5) Think about designing your Fact Extractor. The JWID_places fact extractor
contains the names and place types of the fictitious places created for JWID 2004. The
ISO_Country_Names list fact extractor contains country names. A composite
DEF_placename fact extractor uses these subordinate fact extractors, as well as rules
using prepositions and other common aspects of the text.

6) Write the Fact Extractors. The most common indicator of placenames seems to be a
preposition followed by a group of capitalised words. The most common placename-
introducing prepositions are “at”, “in” and “to”.

Rule: at|in|to …
Pattern: \b(at|in|to|near|from)\s(([A-Z][a-z]+)(\s[A-Z][a-z]+)*)
Actions: matchrange = "2"
 name = MATCH("2")
A country names list fact extractor was constructed by downloading the file at
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1-
semic.txt then extracting the official names using the Unix command:

awk -F\; '{print $1}' list-en1-semic.txt | tr '[:upper:]'
'[:lower:]' > FXLib/ISO_Country_names.fx
and deleting the preamble. This allows a second rule

Rule: countrynames
Pattern: (<ISO_Country_names>)
Actions: placename = MATCH("0")
 Placetype = "Country"
Even if a place is not introduced by the common prepositions, if it is prefixed by a
compass direction, it is usually a placename.

Rule: compass
Pattern: (North|South|East|West|Central)(ern)?(\s[A-Z][a-z]+)+
Actions: placename = MATCH("0")

 DSTO-TR-1729

43

Corpus analysis also demonstrated that frequently a named place was used to identify
a particular facility or event at that place. The word “the” turned out to be quite good
at identifying this use. It does introduce some false positive matches, but also picks up
a number of placenames that would otherwise have been missed.

Rule: the ...
Pattern: [Tt]he\s(([A-Z][a-z]+)(\s([A-Z][a-z]+))*)
Actions: placename = MATCH("1")
 matchrange = "1"

7.5 Relationships

7.5.1 Person Names and Aliases

1) This example is based on a real information need to find names and aliases
associated with Jemaah Islamiah from a lengthy public domain document. The
document also contains multiple languages, making it tedious for a non-linguist to
process. The extracted information is intended for input into data visualisation tools
such as those used to discover social networks. Normally it would not be appropriate
to write a fact extractor for a single document, but in this case fact extractors are used
to save time and tedium. The fact extractor produces (<name>,<alias>) pairs. The
information need required a high level of accuracy.

2) The corpus is a 92 page text document converted from its original PDF format.
While the current version of the Fact Extractor System provides experimental support
for simple PDF documents, the conversion was necessary as the PDF document was
multi-columned, and was not appropriately handled by the Fact Extractor system.

 3) A cursory examination of the document revealed that some of the common phrases
used to indicate the presence of aliases are:

a. <name> alias <alias>
b. <name>(a.k.a. <alias>)
c. <name> who also used the aliases: <alias>,…
d. <name> has a host of aliases: <alias>,…
e. <name> had many aliases: <alias>,…

4) It is useful to generalise the fact extractor to also detect aliases in other similar
documents. Another phrase for identifying aliases is:

f. <name> who went by the aliases <alias>, …

As this list contains both present (“has”) and past (“used”, “had”) indications of
aliases, the planned fact extractor might also be generalised to allow any of these
words interchangeably by a pattern part like “(ha|use)[sd]” rather than just one of
those words. The same issue might occur for “(went|goes)”.

5) The fact extractor design was based on the six phrases identified in steps 3 and 4 to
discover names of people who had one or more aliases. The information need required

DSTO-TR-1729

44

facts to be output as (<name>, <alias>) pairs. Where a person had more than one alias,
multiple facts were required. This task required a high degree of accuracy and it was
decided that a single fact extractor could not meet this criteria. The solution chosen
was to develop two fact extractors for use in the FormFiller[6] application under
manual control. The two fact extractors are described below:

a) DEF_UnboundEntity is designed to discover names of people, and has a
single field - name. It uses clues in the text such as capitalisation, and
consequently picks up other proper nouns such as place names or month
names. This over-generation of facts is tolerated as it is intended to be used
interactively together with DEF_AliasedPerson.

b) DEF_AliasedPerson discovers names of people with aliases, and also has a
single field – name. It is important for this fact extractor to discover all persons
who have one or more aliases.

The FormFiller [6] application allows both fact extractors to be applied simultaneously
merging facts discovered from both into a single record, under user control.

DEF_AliasedPerson accurately discovers each person who has an alias, and
provides a value for the <name> output element. DEF_UnboundEntity over-
generates facts by discovering person and other names. However, by focusing on
names that appear in the vicinity of where DEF_AliasedPerson finds names, it is
possible for the user to easily identify those names that are actually aliases. The
FormFiller application supports the easy creation of multiple records when a person
has more than one alias.

6) For each of the fact extractors described in the design phase a set of rules were
developed and written as follows.

a) DEF_UnboundEntity has a single rule to discover named entities such as
person, place and organisation names. It uses title case to discover proper
names, and utilises a combination of look-behind and guard expression to
target person names more specifically. It allows for a name to optionally
contain the string “bin”, “al”, “di” or “van”.

Over-generation is controlled by using negative look-behind (beginning with
(“(?<!…)” in the first group) in the pattern, and a guard expression. The
negative look-behind is used to discover title case words not preceded by
words like “than”, “an”, “in”, a single digit number from 0 to 9, and so on. The
guard expression is used to enumerate a stop-word list derived from examining
the corpus.

The rule also uses matchrange to set the range of the fact.

The rule specification for this fact extractor is:

Rule: entity name
Pattern: (?<!(an|[Ii]n|\s[0-9]|\sa|he|on|en|om|'s)\s)\b
 (([A-Z][a-'\.]+)
 (\s([Bb]in|[Aa]l|[Dd]i|[Vv]an)-?\b)?

 DSTO-TR-1729

45

 (\s?[A-Z][a-z']+){0,4}),?
Guard Expression:
 NOT(OR(EQUAL(MATCH("2"),"The"),
 EQUAL(MATCH("2"),"See"),
 EQUAL(MATCH("2"),"But"),
 EQUAL(MATCH("2"),"Just"),
 EQUAL(MATCH("2"),"Key"),
 EQUAL(MATCH("2"),"This"),
 EQUAL(MATCH("2"),"Indeed"),
 EQUAL(MATCH("2"),"And"),
 EQUAL(MATCH("2"),"As"),
 EQUAL(MATCH("2"),"They"),
 EQUAL(MATCH("2"),"After")))
Actions: name = MATCH("2")
 matchrange = "2"

b) DEF_AliasedPerson has three rules. Rule 1 is based on phrase a on page 43;
rule 2 is based on phrase b; and rule 3 combines phrases c–f. All rules invoke
DEF_UnboundEntity as a subordinate fact extractor.

The first group in all the rules, (<DEF_UnboundEntity>), finds candidate
names. This is followed by phrases indicating that the entity found has one or
more aliases. The rules use the special field matchrange to restrict the range of
the discovered fact. This is useful for example when a phrase like “A alias B
alias C” occur in the text. In this case B and C are both aliases for A. Restricting
the range of DEF_AliasedPerson to A’s range allows DEF_UnboundEntity
to then pick up B and C as aliases.

Rule1: name alias name

Pattern: (<DEF_UnboundEntity>),? alias (<DEF_UnboundEntity>)

Actions: name = MATCH("1")
 matchrange = "1"

Rule2: name a.k.a.

Pattern: (<DEF_UnboundEntity>)\s\(a\.k\.a\.

Actions: name = MATCH("1")
 matchrange = "1"

Rule3: name who also used the aliases
Pattern:(<DEF_UnboundEntity>),?\s(who also used the|who

also went by the|had many|has a host of)\s
alias(es)?

Actions: name = MATCH("1")
 matchrange = "1"

7) Test and develop these fact extractors iteratively.

DSTO-TR-1729

46

7.5.2 Relationships

Identify an information need: Understanding relationships between people and other
entities is a necessary step towards revealing social networks and otherwise hidden
loyalties between people who might appear to be unconnected.

1) Collect a relevant corpus: in this example fact extractors are likely to be highly
targeted to a particular information source. This may include writing slightly
different fact extractors (or rules) for each different newspaper website being
monitored. So instead of developing an actual fact extractor we will just explore the
issues.

2) Examine the corpus: The information need leads to the understanding that there are
entities and relationships between those entities. The corpus must be studied to find
out how these relationships are described.

3) Generalise the observations by any other relevant knowledge. For example if a
document says “brother” or “father”, make sure that “sister” or “mother” are also
found.

4) Think about designing the Fact Extractor. The corpus analysis suggests the need for
two types of fact extractors:

a) One (or more) subordinate fact extractors that look for named entities, perhaps
people and organisations; and

b) Fact extractor(s) that look for interesting relationships between named entities.
This may be either a composite fact extractor that uses the entity fact extractors,
or more subordinates that are combined later (either in a mega-composite, or
interactively using the FormFiller tool as in section 7.5.1). For example we
might require a family-relationships fact extractor and a membership or
business relationships fact extractor.

In a complex composite fact extractor, it is usually better to have the composite
selecting relevant facts from a slightly bigger pool, than to be missing required
information.

5) Write the Fact Extractors. In this example it is suggested that a two-step
development approach be taken. The first is to develop and test the subordinate fact
extractors, perhaps called NamedEntity and Relationship. When these two fact
extractors have been developed and tested they can be combined into a relationship
fact extractor that looks for patterns of the type “(<NamedEntity>) (<Relationship>)
(<NamedEntity>)”.

6) Test the Fact Extractors. Test each subordinate individually to ensure it is finding all
the subordinate facts. Then test the composite to make sure that it is correctly
combining the results. It should limit the facts to exclude most false positives from
the subordinate facts.

 DSTO-TR-1729

47

8. Evaluation

8.1 During Development

After scanning a corpus of documents it is often easy to construct a set of patterns that
match all the important facts and to then be lulled into a false sense of security about
the accuracy of the fact extractor. It is vital to keep some of the document corpus aside
for blind testing of the fact extractor, i.e. testing with documents that have not been
seen by the developer.

A second area to consider is that during development, changes to rules may be made
that cause the fact extractor to stop working correctly on previously considered
documents. From time to time during the development process it is necessary to re-
examine old documents in the corpus and verify correct behaviour of the fact extractor
under development.

When this document was written the fact extractor workbench provided built-in
regression testing over previously-analysed documents. It is intended that future
development will provide support for on-the-fly quality evaluation as new documents
from the corpus are examined.

8.2 Ongoing Evaluation During Use

Fact extractors are unlikely to ever be part of a set-and-forget system. Information
sources evolve over time and as fact extractors are normally tailored to artefacts of the
information source they will require routine maintenance. In the case of fact extractors
used within the FormFiller application this will usually26 become obvious to the users
and they will request updates. In the case of fact extractors used in an automated
system this gradual degradation is likely to go unnoticed. It is recommended that from
time to time the document stream is randomly sampled and the performance of the fact
extractors over the sample documents examined. The frequency and completeness of
this evaluation is dependant on the accuracy requirements of the system.

9. Summary

This paper has described several applications of information extraction, and the
tradeoffs in requirements for recall, precision, accuracy and speed. It has also described
a number of concepts that apply to using DSTO’s fact extractor technology and
provided a number of examples of how to use each part of a fact extractor. The
examples included a number of guidelines and principles that are collected here in

26 FormFiller users may not notice if some facts go undetected.

DSTO-TR-1729

48

summary. Following these principles will lead to more effective development of fact
extractors.

The general principles for developing effective fact extractors are:

1. Understand the information need before starting development.

2. It is generally not practical to craft a perfect fact extractor so consider the speed
and accuracy requirements.

3. Use a corpus of real text.

4. Keep some of the corpus aside to enable proper testing.

5. Copy interesting sentences from the corpus into a single document to facilitate
development and testing.

6. Identify parts of the text that are key to the existence of a fact, and write create
rules for these sections.

7. For relevant text, which on its own wouldn’t signify the presence of a fact,
develop appropriate expand and co-reference rules to connect with the key text.

8. Develop and test the create rules first. Then introduce expand and co-reference
rules.

9. Develop and test the pattern part of each rule first and then add the actions.

10. Use subordinate fact extractors to simplify complex tasks.

11. Use a list fact extractor at any time if it simplifies the task. Remember that
lower case lists do case-insensitive matching.

12. For better execution speed, use a list fact extractor if there are more than about
twenty simple items.

13. Avoid using guard expressions to constrain very freely matching patterns.
Patterns evaluate faster than guard expressions.

14. Avoid using subordinates that match very frequently (thousands of matches)
by themselves but rarely contribute to the composite.

15. Co-reference rules potentially evaluate their guard expression for every fact
found so far. Avoid using loose patterns, particularly if large numbers of facts
may be found per document.

16. Reuse design principles as well as trying to directly reuse previously developed
fact extractors.

17. Collaborate with others on fact extractor development.

18. Plan to maintain fact extractors over time.

 DSTO-TR-1729

49

10. Further Considerations

The initial intent of the Fact Extractor project was to demonstrate that complex
information could be found by combining simple building blocks. While this has been
demonstrated, the simple building blocks have not proved to be as reusable as
originally anticipated. We expected to be able to build a wide range of completely
generic fact extractors that would then be able to be composed together to satisfy a
particular need, and the fact extractor workbench was designed with this goal in mind.
However it has become apparent that it is unusual to be able to build fact extractors
that behave well across a wide range of different document styles and sources. Each
author, editor, or intended audience tends to have a specific style, and it is often not
possible to identify the significant concepts in different sources of documents in a
completely generic manner for non-trivial information needs.

Although reuse of specific fact extractors for a new purpose often proves impractical,
aspects of their design may be reused. This includes the choice of composite and
subordinate fact extractors; the choice between create, expand and co-reference rules;
and the number and granularity of fields. Accordingly, any future redevelopment of
the fact extractor workbench will be directed toward making this task easier.

References
[1] P L Choong “Adaptive Information Extraction: Research and Development

Trends”, DSTO-CR-0363, Defence Science and Technology Organisation, 2004.
[2] P Wallis & G Chase “Beyond Keywords: Getting from Text to Information”,

Proceedings of the 1998 Optimising Open Source Information Conference.
[3] P Wallis & G Chase “An Information Extraction System”, Australasian Natural

Language Processing Summer Workshop, February 1997.
[4] Jeffery E F Friedl, “Mastering Regular Expressions”, O’Reilly & Associates Inc,

1997, First Edition, USA.
[5] Perl Regular Expressions, http://www.perldoc.com/perl5.6/pod/perlre.html

Last updated 9 Sept 2001; checked March 2005.
[6] FormFiller application is part of the Fact Extractor System software distribution

available on the Defence Restricted Network from:
http://sourceforge.dsto.defence.gov.au/projects/factextractors/

[7] Google ™ is a trademark of Google Technology Inc, http://www.google.com
[8] J Das, G Chase & S Davis “Fact Extractor System Processing Engine”, DSTO-TR-

1396, Defence Science and Technology Organisation, March 2003.
[9] Linguistic Data Consortium Web Site: http://www.ldc.upenn.edu
[10] ISO8601:2000, Data elements and interchange formats– Information interchange –

Representation of dates and times. International Organization for Standardization
(ISO)

[11] ISO 3166-1 English Country Names, International Organization for
Standardization (ISO)

DSTO-TR-1729

50

[12] The FXBench application is part of the Fact Extractor System software
distribution available from the authors. The application is distributed with
online help.

[13] B Williams and N Banks “Normalcy Analysis Toolkit User Guide”, DSTO-IP-
0031, Defence Science and Technology Organisation, 2002.

[14] S Heath “Performance Analysis and Optimisation of the Fact Extractor System”,
DSTO-TN-0566, Defence Science and Technology Organisation, 2004.

[15] Web Naming and Addressing Overview (URIs, URLs, ...), World Wide Web
Consortium http://www.w3.org/Addressing/ Last updated 2005-02-17,
revision 1.56. Created 1993 by Tim Berners-Lee.

 DSTO-TR-1729

51

Appendix A The Regular Expression Based Pattern
Language

Regular expressions are a standard notation for characterising text sequences. Regular
expression language is a language used for specifying text search strings [4]. The fact
extractor system uses regular expressions to detect patterns in text.

The pattern part of a rule specifies the criteria for identifying facts. The patterns are
based on regular expressions with an extension to allow the inclusion of subordinate
Fact Extractors. Refer to the Perl 5 manual[5][4] for a full description of Regular
Expressions. This section will provide a summary of the common features used in
developing Fact Extractors and our extension to support embedded subordinate Fact
Extractors.

A.1. Simple Character Patterns

• A single character that matches itself, eg. “a” matches “a”.

• “xyz” matches an “x” followed by a “y” followed by a “z”.

• A dot “.” matches any single character except newline, e.g. “a.” matches any
two character sequence starting with “a”.

• “^” at the beginning of a pattern forces it to match the start of a sentence.

• “$” at the end of a pattern forces it to match the end of a sentence.

• “\b” matches a word boundary.

• “\w” matches a word character (alphanumeric and “_”).

• “\W” matches a non-word character.

• “\d” matches a numeric character.

• “\s” matches a white-space character such as a space, tab or newline.

A.2. Specifying Groups

• Parentheses “()” can be used to indicate a pattern group.

• Groups are used to control the aggregation of quantifier operators. Group
numbers are used for the FIELD and MATCH action functions, the
matchrange field, and in other parts of regular expressions, for example in
backward referencing.

A.3. Repetitive Patterns

Repetitive patterns match multi-character sequences, for example:

• The asterisk “*” matches zero or more of the previous group,

DSTO-TR-1729

52

• a* matches “”, “a”, “aa”, “aaa”, etc.

• abc* matches “ab”, “abc”, “abcc”, etc.

• (abc)* matches “”, “abc”, “abcabc”, etc.

• The plus sign “+” matches one or more of the previous group,

• a+ matches “a”, “aa”, “aaa”, etc., but not “”.

• abc+ matches “abc”, “abcc”, etc.

• (abc)+ matches “abc”, “abcabc”, etc.

• “\w+” matches a sequence of word characters.

• The question mark “?” matches zero or one of the previous group,

• a? matches “” and “a”.

• abc? matches “ab” and “abc”.

• (abc)? matches “” and “abc”.

• Braces “{n[,m]}” match at least n but not more than m times,

• a{3} matches only “aaa”.

• a{3,5} matches “aaa”, “aaaa”, “aaaaa”.

By default repetitive groupings are greedy; they match as many characters as possible.
To reverse this preference, follow the quantifier with a “?”.

A.4. Alternation

• a list of characters or character ranges enclosed in square brackets matches any
one of them,

• [ab] matches “a” or “b”.

• [3456789] matches any single digit in the range 3 to 9.

• [3-9] is shorthand for the above.

• [a-zA-Z0-9] matches any single letter or digit.

• A “^” indicates not in the set, for example [^0-9] matches any character
which is not a digit.

• The or “|” matches a set of alternatives,

• “abc|def” matches “abc” or “def”.

• AM|PM will match either “AM” or “PM”. This could also be written
as [AP]M.

 DSTO-TR-1729

53

A.5. Extracting Data

Parentheses make sections of the matched text available to the action part of a pattern-
action rule. For example, a pattern such as “(Mr|Mrs|Dr|Ms) ([A-Z][a-z]*)” will
match a title and a surname such as “Mr Smith”.

The parenthesized groups are made available to Action functions (see Appendix B).
For the above example, MATCH(0) accesses the whole matching string, MATCH(1)
accesses the title and MATCH(2) accesses the surname.

A.6. Embedding Another Fact Extractor In A Pattern

Much of the power of the DSTO Fact Extractor System comes from the ability to embed
a previously developed Fact Extractor in the pattern part of a pattern-action rule. For
example, a Date Fact Extractor may wish to embed a Month Fact Extractor in one or
more of its pattern-action rules. Embedded Fact Extractors are enclosed in angle
brackets. For example, a simple Date Fact Extractor which matches dates of the form:
“dd mmm yyyy” where <Month> is assumed to match three letter abbreviations of
month could be represented by the modified Regular Expression:

\b([0-3]?[0-9]) (<Month>),? ([12][0-9][0-9][0-9])

The sets of parentheses in the above example will enable the day, month and year to be
used in the action part of the pattern-action rule.

To reiterate, embedded subordinate Fact Extractors are enclosed in angle brackets.
Regular Expression Language meta-characters cannot be used on embedded sub-
ordinate Fact Extractors, for example, “<numberFX>?” is not valid.

DSTO-TR-1729

54

Appendix B The Action Language

The table below describes functions available in the FX Expression Language Functions
Suite. These functions can be used in guard expressions to constrain a match, and in
action expressions to assign values to Fact Extractor fields. When a running Fact
Extractor invokes an FX Expression Language Function with invalid argument(s) in a
rule Action or Guard Expression, an error message is generated and reported.

The Fact Extractor System is not limited to the set of functions described below. Any
Java static function which takes only String parameters and returns a String can be
invoked simply by using the fully-qualified class and method name.

ADD(arg1, ...) returns the sum of its arguments

AND(arg1, ...) returns the logical AND of the arguments

ARCCOS(arg) returns the arc cosine of an angle (in radians)

ARCSIN(arg) returns the arc sine of an angle (in radians)

CACHE(fxname, fieldname
 [, default])

searches the cache of recent facts for fxname, and
returns the value of fieldname (or default if not
found)

CONCAT(arg1, ...) returns the concatenation of its arguments

COS(arg) returns the cosine of an angle (in radians)

DBLOOKUP(datasource,
sqlstatement [, userid, password])

returns a value from a database

DIVIDE(dividend, divisor) returns dividend/divisor

EQUAL(arg1, arg2) returns TRUE if they are the same, FALSE
otherwise

EXISTS(value) checks to see if the value is not empty

FIELD(matchnum, fieldname) returns the value of the named field of the
subordinate FX at matchnum

 DSTO-TR-1729

55

FORMATNUMBER(number,
format)

returns number in the specified format. See the
online help for format specifications

GREATERTHAN(arg1, arg2) returns TRUE if arg1 > arg2, FALSE otherwise

IF(condition, iftrue, iffalse) if the condition is true, returns the result of
evaluating iftrue; otherwise, returns the result of
evaluating iffalse.

LESSTHAN(arg1, arg2) returns TRUE if arg1 < arg2, otherwise FALSE

MATCH(n) returns the nth parenthesised group from the
pattern. Groups are numbered in the order that
their left parenthesis appears in the pattern.
MATCH(0) is the whole pattern

MULTIPLY(arg1, ...) returns the product of its arguments

NOT(arg1) returns the logical opposite of the argument

OR(arg1, ...) returns the logical OR of the arguments

PI() returns the nearest possible representation to PI,
the ratio of the circumference of a circle to its
diameter

PROPERTY(propertyname) not implemented yet, but will return the value of
the named property of the sentence

SIN(arg) returns the sine of an angle (in radians)

STRLENGTH(string) returns the length of the string argument

SUB(s, from, to) returns the substring of s defined by from and to

SUBTRACT(arg1, arg2) returns the difference between the two numeric
arguments (arg1 - arg2)

TOUPPERCASE(string) returns the given string argument in lower case

DSTO-TR-1729

56

TOLOWERCASE(string) returns the given string argument in lower case

VALUE(name) Inside an action expression returns the value of
the field “name” of the fact currently being
populated by the rule.

It is not valid to use this action inside the guard
expression of a create rule as the values haven’t
been set up yet.

Inside the guard expression for a co-reference
rule it returns the value of a field of a previous
fact and may be used to aid in determining if that
fact is really a co-reference.

Inside the guard expression of an expand rule it
returns the value of a field from the fact that is
being expanded.

 DISTRIBUTION LIST

 Towards Developing Effective Fact Extractors

Greg Chase, Jyotsna Das and Scott Davis

AUSTRALIA

DEFENCE ORGANISATION
 No. of copies
Task Sponsor:
ASCCR, Defence Intelligence Organisation (R4-3-201) Doc Data Sheet
DINTCAP, Defence Intelligence Organisation (R4-3-181) 1
ADIIE, Defence Intelligence Organisation (R4-3-182) 1

S&T Program

Chief Defence Scientist
FAS Science Policy shared copy
AS Science Corporate Management
Director General Science Policy Development
Counsellor Defence Science, London Doc Data Sheet
Counsellor Defence Science, Washington Doc Data Sheet
Scientific Adviser to MRDC, Thailand Doc Data Sheet
Scientific Adviser Joint 1
Navy Scientific Adviser Doc Data Sheet
Scientific Adviser - Army Doc Data Sheet
Air Force Scientific Adviser Doc Data Sheet
Scientific Adviser to the DMO Doc Data Sheet

Information Sciences Laboratory

Chief Command & Control Division Doc Data Sheet
Research Leader Command Decision
 Environments Branch 1
Research Leader Information Enterprises Branch Doc Data Sheet
Research Leader Joint Command Analysis Branch Doc Data Sheet
Research Leader Intelligence Information Branch 1
Head Human Systems Integration Doc Data Sheet
Head Information Exploitation Doc Data Sheet
Head Effects-Based Modelling and Analysis Doc Data Sheet
Head Information Systems Doc Data Sheet
Head Distributed Enterprises Doc Data Sheet
Head Joint Operations Analysis and Support Doc Data Sheet
Head Command Concepts and Architectures Doc Data Sheet
Head Command Process Integration and Analysis Doc Data Sheet
Head Intelligence Analysis 1

}

Greg Chase (Author) 1
Jyotsna Das (Author) 2
Scott Davis (Author) 1
Dr P L Choong, IA Group C2D 1
Dr D Parker, IA Group C2D 1
Dr T Pattison, C2D 1
Mr B Dennis, C2AST C2D (Potts Point NSW) 1
Publications and Publicity Officer, C2D/EOC2D 1 shared copy

Science Policy Division

Mr David Clayton, A/DT2CO, DSTO Edinburgh 1

DSTO Library and Archives

Library Edinburgh 1 + Doc Data Sheet
Defence Archives 1

Capability Development Group

Director General Maritime Development Doc Data Sheet
Director General Land Development Doc Data Sheet
Director General Integrated Capability Development Doc Data Sheet
Director General Capability and Plans Doc Data Sheet
Assistant Secretary Investment Analysis Doc Data Sheet
Director General Capability Plans and Programming Doc Data Sheet
Director General Australian Defence Simulation Office Doc Data Sheet

Chief Information Officer Group

Director General Australian Defence Simulation Office Doc Data Sheet
Director General Information Policy and Plans Doc Data Sheet
AS Information Strategy and Futures Doc Data Sheet
AS Information Architecture and Management Doc Data Sheet
Director General Information Services Doc Data Sheet

Strategy Group
Director General Military Strategy Doc Data Sheet
Assistant Secretary Governance and Counter-Proliferation Doc Data Sheet

Navy
Maritime Operational Analysis Centre, Building 89/90 Doc Data Sht & Dist
Garden Island Sydney NSW List (shared)

 Deputy Director (Operations)
 Deputy Director (Analysis)
Director General Navy Capability, Performance and Plans,
 Navy Headquarters Doc Data Sheet
Director General Navy Strategic Policy and Futures,
 Navy Headquarters Doc Data Sheet

Air Force

SO (Science) - Headquarters Air Combat Group, RAAF Base,
Williamtown NSW 2314 Doc Data Sht & Exec Summ

Army

ABCA National Standardisation Officer
 Land Warfare Development Sector, Puckapunyal e-mailed Doc Data Sheet
SO (Science) – Land Headquarters (LHQ)
 Victoria Barracks NSW Doc Data Sht & Exec Summ
SO (Science), Deployable Joint Force
 Headquarters (DJFHQ) (L), Enoggera QLD Doc Data Sheet

Joint Operations Command
Director General Joint Operations Doc Data Sheet
Chief of Staff Headquarters Joint Operations Command Doc Data Sheet
Commandant ADF Warfare Centre Doc Data Sheet
Director General Strategic Logistics Doc Data Sheet
COS Australian Defence College Doc Data Sheet

Intelligence and Security Program

AS Concepts, Capability and Resources 1
DGSTA, DIO 1
COMD JOIC, Joint Operational Intelligence Centre Doc Data Sheet
Director, Business Information Management,
 Defence Intelligence Organisation 1
PDJISS, Joint Intelligence Support System Doc Data Sheet
PBD, Defence Signals Directorate Doc Data Sheet
J2HQAST Doc Data Sheet
Manager, Information Centre, Defence Intelligence

Organisation 1 (PDF version)
Assistant Secretary Corporate, Defence Imagery and
 Geospatial Organisation Doc Data Sheet
Assistant Secretary Capability Provisioning Doc Data Sheet
Assistant Secretary Capability and Systems Doc Data Sheet

Defence Materiel Organisation
Deputy CEO Doc Data Sheet
Head Aerospace Systems Division Doc Data Sheet
Head Maritime Systems Division Doc Data Sheet
Head Electronic and Weapon Systems Division Doc Data Sheet
Program Manager Air Warfare Destroyer Doc Data Sheet

Defence Libraries
Library Manager, DLS-Canberra Doc Data Sheet

OTHER ORGANISATIONS

National Library of Australia 1
NASA (Canberra) 1
State Library of South Australia 1

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library 1
Head of Aerospace and Mechanical Engineering 1

Serials Section (M list), Deakin University Library,
 Geelong, VIC 1
Hargrave Library, Monash University Doc Data Sheet
Librarian, Flinders University 1

OUTSIDE AUSTRALIA

INTERNATIONAL DEFENCE INFORMATION CENTRES

US Defense Technical Information Center 1 PDF
UK Dstl Knowledge Services 1 PDF
Canada Defence Research Directorate R&D Knowledge
 & Information Management (DRDKIM) 1
NZ Defence Information Centre 1

ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service 1
Engineering Societies Library, US 1
Materials Information, Cambridge Scientific Abstracts, US 1
Documents Librarian, The Center for Research Libraries, US 1

SPARES 5

Total number of copies: Printed 40 + PDF 3 = 43

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

Towards Developing Effective Fact Extractors

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS THAT
ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Greg Chase, Jyotsna Das and Scott Davis

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER
DSTO-TR-1729

6b. AR NUMBER
AR-013-418

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
June 2005

8. FILE NUMBER
2004/1065566/1

9. TASK NUMBER
INT 02/290

10. TASK SPONSOR
ASCCR DIO
DINTCAP DIO
ADIIE DIO

11. NO. OF PAGES
56

12. NO. OF REFERENCES
14

13. URL on the World Wide Web

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-1729.pdf

14. RELEASE AUTHORITY

Chief, Command and Control Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DEFTEST DESCRIPTORS

Intelligence
Text processing
Information extraction

19. ABSTRACT

DSTO has a program of research into automated text processing. Part of this research has led to the development of a prototype information extraction
system known as the DSTO Fact Extractor System. This system can be used to extract interesting information from free text documents. Part of
applying the DSTO technology involves a skilled user developing a set of one or more fact extractors that control the behaviour of the information
extraction engine. These fact extractors are developed with the aid of an integrated development environment known as the Fact Extractor
Workbench. This report uses a range of examples to discuss the issues that must be considered when developing fact extractors.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Authors
	Contents
	1. Introduction
	2. Types of Information Extraction
	2.1 Named Entity
	2.2 Co-reference
	2.3 Concepts
	3. Application of Fact Extractors and Accuracy Considerations
	3.1 Accuracy and Information Extraction
	3.2 Assisted Reading
	3.3 Advanced Information Retrieval
	3.4 User Assisted Database Population
	3.5 Automatic Database Population
	3.6 High Volume Data Feeds

	4. Fact Extractor Concepts
	4.1 Facts
	4.2 Fact Extractors
	4.2.1 Fact Attributes
	4.2.2 Fact Extractor Rules

	4.3 Categories of Fact Extractors
	4.4 The Fact Extractor Processing Model
	4.4.1 Finding the Sentences
	4.4.2 Reformatting Text
	4.4.3 Processing a Sentence
	4.4.4 The Fact Cache

	5. Fact Extractor Design Patterns
	5.1 A Simple List with Just a Few Items
	5.2 A Simple List with Result Substitution
	5.3 A List with Many Items
	5.4 A Simple Pattern
	5.5 Multiple Create Rules
	5.6 Complex Actions
	5.7 Implied Information
	5.8 External Action Functions
	5.9 Extra Constraints
	5.10 Subdividing Complex Tasks
	5.11 Linking Back to Previous References of a Fact (Co-reference)
	5.12 Expand Rules
	5.13 Reducing the Range of a Match
	5.14 Execution Speed Considerations

	6. Overview of the Fact Extractor Development Process
	6.1 Identify the Information Need
	6.2 Collect a Corpus of Representative Source Documents
	6.3 Examine the Corpus
	6.4 Generalise Your Observations
	6.5 Consider the Design
	6.6 Develop
	6.7 Test
	6.8 Deploy
	6.9 Collaborative Development

	7. Examples of Developing Fact Extractors
	7.1 Extraction of Tightly Structured Objects
	7.1.1 Internet Protocol (IP) Address
	7.1.2 Email Address
	7.1.3 URL
	7.1.4 Phone Numbers

	7.2 Dates and Times
	7.2.1 Dates
	7.2.2 Times

	7.3 Names of People
	7.3.1 Names from a List of Known Names
	7.3.2 Unbounded Names

	7.4 Placenames
	7.5 Relationships
	7.5.1 Person Names and Aliases
	7.5.2 Relationships

	8. Evaluation
	8.1 During Development
	8.2 Ongoing Evaluation During Use

	9. Summary
	10. Further Considerations
	References
	Appendix A The Regular Expression Based PatternLanguage
	Appendix B The Action Language
	DISTRIBUTION LIST
	Document Control Data Sheet

